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Abstract 

The term “sustained drug release” first appeared in 1953 when scientists 

attempted to use alkaloids and ion exchange to retard the release of drugs from capsules. 

The main motivation behind sustained drug release was to ensure that the drug was in 

contact with the stomach and intestine lining for as long as possible. Today, the 

motivation for using sustained drug release tablets has shifted to helping clinicians 

increase patient compliance. A 2002 study found that sustained-release of Glipizide, an 

oral drug for Type 2 diabetes, increased adherence indices by 60%. Current drug release 

systems, however, have not evolved and are limited by the tablet degradation properties. 

Engineers have not been able to consistently develop oral drug delivery devices that can 

last for more than 72 hours.  

 

We propose to develop a 500 micron sized metallic theragripper composed of a 

chromium/copper stress bilayer, a gold rigid layer and a paraffin wax trigger layer. The 

paraffin wax trigger layer can serve as a sustained controlled drug delivery component. 

This study aims to begin examining the development of a system that uses paraffin wax 

as a drug delivery component. In order to do so, we examined some previous wax drug 

delivery systems along with our own experiments. Successful completion of this initial 

study will provide future engineers with direction when attempting to develop safe, 

scalable and effective drug delivery devices based on paraffin wax.  

 

Advisor: Dr. David Gracias     Reader: Dr. Honggang Cui  
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Figure 1: Reduced Adherence with Increased Dose Frequency. Claxton et al. performed an extensive 

review of published reports to find that as dosing frequencies increase, adherence rates decrease.7 “aOnce daily 

vs. three-times daily, P = 0.008. bOnce daily vs. four-times daily, P < .001. cTwice daily vs. four-times daily, P 

< 0.001.”6 Reprinted with permission from Springer. Copyright 2013. 

Chapter 1: Introduction to Controlled Drug Delivery 
 

Controlled drug delivery has been the motivation for various research fields and 

has grown even more rapidly with the introduction of micro/nanoscale drug delivery 

devices. Localized and systemic controlled drug delivery devices are of great interest to 

the medical and biomedical community. Mark Saltzman defines controlled drug delivery 

as “(1) includ[ing] a component that can be engineered to regulate an essential 

characteristic and (2) have a duration of action longer than a day.”1 Controlled drug 

delivery allows for both spatial and temporal delivery of drugs, whereas sustained release 

allows for a more prolonged release of drugs.  

 

1.1 Background 
 

Controlled release devices provides clinicians with an alternative to increase 

patient compliance.2 Diabetes mellitus type 2 affects 366 million people worldwide.3 For 

those patients on oral hypoglycemic drugs, the average adherence rate is around 40%-
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46%.4,5 Recent studies have shown that a large factor for reduced adherence in patients 

taking oral hypoglycemic drugs is increased dosing frequency.6,7 

In addition to the potential for increased patient compliance, controlled drug 

release reduces ‘see-saw’ concentration fluctuation. With traditional immediate release 

drug delivery systems, there is a fluctuation in drug concentration in systematic 

circulation as well as in body compartments. These fluctuations are dependent on basic 

drug kinetics.2 ‘See-saw’ fluctuations can affect a drugs ability to stay within the 

minimum toxic concentration (MTC) and minimum effective concentration (MEC) 

window.8 In order to minimize side effects, drug concentration must remain below MTC, 

however in order for the drug to maintain therapeutic benefit, drug concentration must 

remain above the MEC.9  

Figure 2: Immediate vs. Controlled release. Controlled release devices allow 

for optimization in order to maintain drug concentration within the therapeutic 

range. Overall, this allows for reduction in side effects.9  
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 Controlled drug delivery also reduces the overall necessary dose. This leads to 

fewer systematic and local side effects. Furthermore, reduced dosage is of great economic 

benefit as the price per unit for the drug is greatly reduced. This, in turn, can lead to an 

increase in patient compliance. Zeng et al., found that a 33% reduction in cost for diabetic 

medications led to a 7.3% increase in adherence.10 

 Yet another advantage controlled drug delivery offers is improved treatment 

efficiency. With systematic immediate release doses, the drug action pervades all organs 

and tissue in the body. This can lead to undesirable side effects and an increase in risk to 

patients with existing alternate conditions. A controlled release drug delivery device can 

manage the overall drug concentration for acute and chronic conditions.2  

 A particular challenge of controlled drug delivery is a phenomenon called dose 

dumping. Dose dumping would result from a malfunction in the drug delivery device 

where the stored dosage would be rapidly released into systematic circulation. This could 

potentially lead to fatalities, especially in potent drugs with a small MEC-MTC window.2  
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Figure 3: Immediate Dose Release vs. Dose Dumping Device. A malfunctioning 

controlled drug delivery device that is dose dumping (orange) will surpass the minimum 

toxic concentration (gray) and maintain a drug plasma level at a dangerously high 

concentration. Immediate drug release systems (blue) carry a short life-span and dose so 

they can remain above the minimum effective concentration (black) yet stay below the 

MTC.  
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Another challenge of controlled drug delivery is a limited dosing flexibility for 

the prescriber and patient. Current oral drugs allow for the patient or provider to alter the 

drug dose by fracturing tablets or capsules into multiple pieces. This greater flexibility 

provides for simpler dose adjustments. With controlled drug delivery devices, there will 

need to be a greater variety of doses available to each patient. This leads to reduced 

flexibility. For example, some patient suffering from diabetes may not need a full dose on 

any given day. The dose required for these patients could fluctuate daily. Controlled drug 

delivery devices will not provide similar flexibility. Fracturing controlled drug delivery 

devices could make them more susceptible to dose dumping as the controlled release 

material property could be compromised if fractured.2   

Many controlled drug delivery systems follow diffusion kinetics. The drugs are 

encapsulated in high concentrations in either a reservoir or matrix system. The drug 

particles then move from a region of high concentration to the boundary layer, where 

there is a low concentration. The flux (J) of the drug across the given boundary of the 

delivery system is characterized by Fick’s law.2  

𝐽 = −𝐷
𝑑𝑐

𝑑𝑥
     [Equation 1] 

Where D is the diffusion coefficient and dc/dx is the change in concentration (c) over 

distance (x). Furthermore, when the drug is encapsulated in a water insoluble membrane, 

it must travel through membrane and thus the drug release rate (dm/dt) is defined by 

Equation 2.2  

𝑑𝑚

𝑑𝑡
=

𝐴𝐷𝐾∆𝐶

𝐿
     [Equation 2] 
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Here, A and L are the area and thickness of the membrane layer, respectively.  K is the 

partition coefficient of the drug between the boundary membrane layer and the high 

concentration drug core while ΔC is the concentration difference over the membrane.2  

 

1.2 Reservoir Type System 
 

 Reservoir delivery systems are becoming an increasingly popular choice for 

sustained drug delivery. The drug release rate is controlled by the polymer properties and 

the thickness of the coating. In addition, the physicochemical properties of the drug, such 

as solubility, drug particle size and molecular weight, play a large role on the drug release 

kinetics from the polymer layer.11,12 Reservoir systems are most useful for sustained drug 

Figure 4: Reservoir system categories. Various systems can be used for reservoir drug 

delivery. Hydrogels provide a multitude of possibilities. Implants are now being 

researched as long-term systemic drug delivery systems. Injectable options, such as 

micro/nanospheres are considered versatile drug delivery systems, offering both 

systemic and targeted drug therapy.13 Reprinted with gratis reuse permission from Sage 

Publications. Copyright 2012. 
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delivery to a localized region or long-term systematic administration.13  Systematic 

administration is usually accomplished using a subcutaneous or intramuscular injection or 

implantation. Based on the shape and structure of the reservoir system, they can be 

classified into the categories depicted in Figure 4.  

 

 Implantable systemic stand-alone reservoir-based drug delivery systems offer a 

unique option for controlled drug delivery. Often, the implant is surgically placed which 

can be invasive and carry associated risks such as inflammation or infection. There are 

some implants that can be taken orally to provide long-term systemic controlled drug 

delivery through the gastrointestinal tract. The polymers used in these systems must be 

“biostable, nonbiodegradable, biocompatible and stable in contact with metals.”13 For 

example, in the 1980s, the Medtronic Corporation’s pacemakers were insulated using 

polyurethane. Over time the polyurethane degraded, leading to inflammatory and fibrotic 

reaction. In 2002 Boston Scientific Corporation introduced poly(styrene-block-

isobutylen-block-styrene; SIBS).13 SIBS is a biostable thermoplastic polymer that has the 

properties of both silicone and polyurethane.14  

 

1.3 Matrix Type System  
 

 Matrix type systems involve using an insoluble polymer matrix, such as a 

hydrogel, to optimize the rate of drug diffusion from the delivery system. The mass of 

drugs released per unit area at time t is characterized by the Higuchi equation.15  

𝑄 = √
𝐷∅

𝑇
(2𝐴 − ∅𝐶𝑠)𝑡    [Equation 3] 
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Where:  

Ø represents the porosity of the matrix 

Cs is the solubility of the drug in the release medium 

T is the tortuosity of the matrix 

A is the concentration of drug in the matrix  

D is the diffusion coefficient of the drug in the medium surrounding the matrix 

 Monolithic matrix systems require the drug to be encapsulated or blended into the 

matrix. These systems can depend on hydrophobicity, hydrophilicity, and solubility to 

control the rate of drug delivery.16   

 

For systems with partially soluble membranes encapsulating the drug particles, the 

release rate is characterized by Equation 4.2 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 =
𝐴𝐷

𝐿
= [𝐶1 − 𝐶2]   [Equation 4] 

 

Figure 5: Drug release from varying matrix types. Hydrophobicity can play a role in driving drug 

release. Erodible matrices behave similarly to dissolvable tablets. Swellable matrices may offer unique 

smart polymer action.16  
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Where:  

A is the Area of the membrane 

D is the diffusion coefficient 

C1 is the drug concentration in the matrix  

C2 is the drug concentration in the surrounding medium 

L is the diffusional path length  

The release rate relies mainly on diffusion and thus with these matrix type systems, the 

drugs are placed in the matrix following two approaches. The first approach is 

encapsulating the drug in an insoluble matrix. This allows for the surrounding medium to 

penetrate the matrix and allow the drug to diffuse out of the matrix. The surrounding 

medium or solvent drives the diffusion of drugs. The second approach is encapsulating 

the drug in a polymer coat. In this case, the outer polymer coat is dissolved by the 

surrounding medium allow the drug to diffuse out through the now liquid boundary layer 

into the surrounding fluid.2  

Figure 6: Polymer coat approach for matrix drug delivery. The polymer coat will dissolve 

over time t and leave behind a liquid boundary layer through which the drug will diffuse.2 
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1.4 Hydrogel type system   
 

  Hydrogels offer unique properties due to their hydrophilic insoluble nature. They 

are capable of absorbing large quantities of water in their network layers. Since they are 

porous, water-absorbing materials, drug diffusion rate is dependent on the extent of cross-

linking. Cross-linked polymers give the hydrogel a large variety of networks chains for 

the drug particles to flow through.1 Cross-linking primarily prevents molecules from 

dissolving into the surrounding water. Instead, cross-linked polymers will cause the 

hydrogel to swell as the material enters the network. Hydrogel swelling is limited by the 

extent of cross-linking and thus the more cross-linked a hydrogel, the more it will 

swell.17–19  

 

Figure 7: Hydrogel cross-linking density effect on physical properties. As cross-

linking density increases, so does the modulus (G). The equilibrium swelling ratio 

(Q), drug diffusivity (D) and mesh size (ξ) decrease, however, with increasing cross-

linking density.19 Reproduced from Ref 19 with permission from The Royal Society 

of Chemistry. Copyright 2013. 
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Chapter 2: Factors to Consider 

 Factors that affect drug release rate include: “drug characteristics, polymer 

variables factors, and the formulation aspects.”20    

 

2.1 Drug-Related Factors 
 

Drug solubility plays an important role in how readily the drug will diffuse out of 

a given matrix. These problems can be fixed by adjusting the matrix with surfactants.20,21 

Drug solubility can also affect the mechanism of matrix erosion due to particle 

displacement. Decreased drug solubility leads to increase erosion of the matrix since the 

matrix network could segment from the dispersion of insoluble drug particles.20 In 

particular, solid particles will reduce swelling of a matrix by entangling the polymer 

network. Generally, soluble drugs will promote swelling while poorly soluble drugs will 

prevent swelling and thus lead to erosion.20,22  

Figure 8: Factors to consider for controlled drug delivery. These three factors can affect the release rate and 

controllability of a drug delivery system.20 Reprinted with permission from Springer. Copyright 2004. 
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 In addition to drug solubility, dosing and drug loading can also affect the drug 

release kinetics. Increased drug content will increase the rate of release since there is a 

larger concentration and thus a greater gradient. Equation 5 characterizes the volume 

fraction of a drug (γds in cm3
drug/cm3

gel) at the gel layer.20,23  

γds =
𝐶𝑠γ𝑤

𝜀𝑑
     [Equation 5] 

Where:  

Cs is drug solubility in water 

γw is the water volume fraction at the gel layer 

Ɛd is the drug density  

Again, when the drug solubility is low, the polymer erosion will play a larger role in drug 

release kinetics. In general, the release rate is proportional to the drug solubility-drug 

loading ratio.20,24  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A drug’s molecular weight, particle size and particle shape can play a significant 

role in the kinetics of the delivery system. The erosion zone and gel layer kinetics is 

Figure 9: Drug release from a swellable matrix. As the matrix hydrates in the presence of water, both a gel layer and erosion 

front start to develop around the drug reservoir. These two properties of matrices play a large role in diffusion kinetics.20 

Reprinted with permission from Springer. Copyright 2004. 
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governed by the diffusion coefficient of a drug. Diffusion coefficients can vary among 

different matrices to being nearly zero in a dry matrix and reaching a maximum in a 

hydrated matrix.20 The Higuchi equation (see Equation 3) dictates that the drug release 

rate from a matrix based model is proportional to the square root of the diffusion 

coefficient. The diffusion coefficient depends on molecular weight, particle diameter and 

matrix viscosity. Furthermore, in general, drugs with molecular weights of >500Da are 

suspected to be poorly diffusible out of hydrophilic matrices due to the constraining 

nature of aqueous gel structures.20,25  

 

 2.2 Polymer-Related Factors 

 Polymer properties arguably play the largest role in drug release kinetics for 

controlled release drug delivery systems. Drug release depends on both its ability to 

diffuse through the matrix as well as the rate of polymer erosion. As the free volume of 

the polymer increases, so does drug diffusivity. Drug diffusivity is also dependent on the 

thermodynamic relation between the specific drug particles and the polymer matrix. 

Polymer variability can be dependent on its “chemical nature, type and degree of 

substitution, cross-linking, and molecular weight.”20  

 Development of a controlled release drug delivery system begins with selecting 

the best polymer type for the desired drug release kinetics and mechanism. In the past, 

silicon derivatives were used for fabrication of controlled-release systems, however, more 

recently, there has been a shift to using water-soluble and biodegradable polymers. 

Polymers can be defined as “high molecular weight molecules made up of monomer units 
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with unique properties attributed to their size and three-dimensional arrangement.”20 

Generically, there are two broad categories for polymers: water-soluble and water-

insoluble.  

In hydrophobic matrices, drug is released through aqueous pores in the matrix 

network. In hydrophilic matrices, drugs migrate through a gel layer before being 

deposited into the target site. These differences between water-soluble and water-

insoluble polymers can play a large role in determining release kinetics for drugs. In 

addition, the polymer’s ionic and chemical composition can interact with drug particles to 

drastically influence the release kinetics.20,26 Furthermore, physicochemical properties 

can affect the formation and stability of a gel layer in hydrophilic matrices like Carbopol. 

Studies have shown that the gel layer propagates much quicker when loaded with basic 

drugs compared to acidic drugs indicating a pH-dependence on the gelation of 

Figure 10: Atomic Force Microscopy image of poly(2-vinylpyridine) (P2VP) polymer chains.172  

Reprinted with permission from the American Chemical Society. Copyright 2005. 
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Carbopol.20,27 Alternatively, some polymers, such as Chitosan, tend to interact with 

anionic drugs.28 Other polymers may indicate stereo-selective interactions of functional 

groups of the drug and polymer which can alter release rates as well.20,29,30  

 

Other important physicochemical properties include: polymer viscosity, gel point, 

hydration rate and glass transition temperature. Figure 12 lists these properties for a 

variety of widely used polymers in controlled release drug delivery systems.  

Figure 11: Cumulative kinetic release of (R)-propranolol hydrochloride (open circles) versus (S)-

pronanolol hydrochloride (filled circles). HPMC matrices exhibit a slight preference for dissolution of 

(S)-propranolol hydrochloride as opposed to (R)-propranolol hydrochloride.30 Reprinted with permission of 

Springer. Copyright 1993. 
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Figure 12: Physicochemical properties of widely used polymers in controlled drug delivery systems. This figure is a compilation 

of important physicochemical properties  for commonly used polymers.20 Reprinted with permission from Springer. Copyright 2004. 

mPa: Millipascal; ND: no data; s: seconds; w/v: weight/volume 
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In addition to selecting the correct type of polymer, it is important to keep in mind 

the polymer viscosity grade. Polymers can be synthesized at various viscosities and often 

times the viscosity grade is selected during the controlled release delivery system 

fabrication process. The viscosity of the polymer will dictate the release rate from the 

matrix by altering the diffusivity and mechanical properties of the gel or erosion 

layers.20,31 At higher viscosity grades, matrices are faster hydrating and thus develop a 

mechanically strong gel layer relatively quickly. This can limit the amount of drug 

initially released, minimizing the burst effect, while also allowing for an overall longer 

period of drug release.20,32 Mechanically stable gel layers tend to be more tortuous and 

thicker thus decreasing the drug’s diffusion coefficient.20,33 In addition to the viscosity of 

the polymer, matrices that are substituted with hydration enhancing materials can develop 

a multitude of gel layers. This is due to increased or decreased water uptake based on the 

degree of substitution which can decide the final gel structure.20,31,34,35 Rheology plays a 

role in the degradation and deformation of matrices. Studies have found a linear 

relationship between polymer viscosity for the 50% release of verapamil hydrochloride. 

This relationship was also reported between the furosemide release rate a varying 

viscosity and concentration of hydroxypropyl methylcellulose (HPMC).20,36 Lastly, the 

drug itself can affect the viscosity of the polymer. For example, the drug Nicotinamide 

forms hydrogen bonds with hydrophilic groups of HPMC thus having a “salting-in” 

effect on the polymer. This expands the polymer chains, increasing the viscosity, gelation 

temperature and cloud point. This type of interaction between a drug and polymer can 

result in a decrease in molecular mobility. Additionally, this interaction can alter the glass 

transition temperature which can have a drastic effect on the release rate.20,37   
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 While polymer viscosity plays a large role in varying release rates, polymer 

proportions can also play a role in the release profile from a matrix device. Increasing 

polymer proportion increases the gel viscosity which increases the diffusional path 

length. This increase in diffusional path length will then decrease the diffusion coefficient 

of the solute thus decreasing the drug release rate.20  For example, a study of drug 

dissolution from select polymers found that changing the Methocel™ level from 10% to 

Figure 13: Effect of Nicotinamide on viscosity of aqueous HPMC-Nicotinamide solution with 

increasing temperature. As the concentration of Nicotinamide increases, (A) 0w/v% (B) 1.5w/v% (C) 

3.0w/v%, the viscosity of HPMC decreases. The temperatures denote the gelation temperature.37 Reprinted 

with permission from Elsevier. Copyright 2001.  
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40% led to a significant reduction in drug release rate while increasing the Methocel™ 

level resulted in an increased release rate.20,38 

 

 With viscosity playing a large role in the release rate of drugs from various 

polymers, individual particle properties undoubtedly play a role in drug kinetics. The 

number of particles in the polymer is directly proportional to the accessibility of particle 

contact points, viscosity, porosity and tortuosity of a given polymer matrix.20 

Furthermore, increasing the bulk density of a matrix exponentially decreases the rate at 

Figure 14: Effect of varying Methocel proportions on drug release. 10% Methocel (a) 

releases drugs at a faster rate than 40% Methocel (b) formulations. This is likely due to the effect 

of Methocel on the viscosity of the release polymer.38  Reprinted with permission from Elsevier. 

Copyright 1998. 
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which medium can penetrate the polymer’s matrix network suggesting that increasing 

bulk density or decreasing porosity increases hydration resistance.20,39 In addition to 

affecting the rate of hydration, increasing the particle size of HPMC have shown a 

decrease in the lag period. This indicates a burst release of drugs before a gel layer 

develops at the polymer medium boundary layer. In Figure 15, Heng et al. shows the 

effect of particle size on the rate of aspirin dissolution from HPMC matrices.20,40  

Figure 15: HPMC particle size affects rate of aspirin release from HPMC matrix. The rate of 

drug release increases with increasing particle size, 160-200µm (open circle), 100-120µm (closed 

circle), 70-80µm (open square), 40-50µm (closed square).40 Reprinted with permission from 

Elsevier. Copyright 2001. 
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Using the data obtained from this experiment, Heng et al. developed Equation 6, a linear 

relationship (R2 = 0.9698), to describe the effect of polymer particle size and number on 

the drug release constant (K1).
20,40 

𝐾1 =
𝐷

(𝑁𝑝𝑜𝑙𝑦𝑚𝑒𝑟𝑃𝑝𝑜𝑙𝑦𝑚𝑒𝑟)1/3
+ 𝐴   [Equation 6] 

Where: 

Npolymer is the relative number of polymer particles in the matrix 

Ppolymer is the mean particle size in the matrix powder 

D is a constant representing matrix system’s sensitivity to changes in Npolymer and Ppolymer 

A is a release retarding constant  

 The final important polymer variable to consider is the combination of polymers. 

Recent studies have indicated gel layer consistency playing a role in the drug release 

kinetics.20,41–43 Gel layer consistency is related to the rheological properties of the gelling 

agent or polymer. Rheologic synergism has been shown to enhance the rate of drug 

release due to favorable molecular interactions between polymers.20 
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2.3 Formulation Variables 

 An important formulation variable that can significantly affect the drug release 

profile of a controlled drug delivery system is system geometry.20 Geometry can affect 

the rate of drug dissolution by altering the consistency and formation of the gel layer. The 

thickness of the gel layer is dependent on the available surface area of the drug delivery 

system. For example, the total drug release from a matrix with a planar surface is 

Figure 16: Effect of aspect ratio on drug release kinetics. As the aspect ratio increases, so does the drug 

release rate. A planar cylinder or disk (aspect ratio =20) is the fastest releasing system, next is a medium sized 

cylinder (aspect ratio = 2) and the slowest is a rod-shaped delivery device (aspect ratio=0.2).29 Reprinted with 

permission from John Wiley and Sons. Copyright 1999. 
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proportional to the square root of time.20 Other geometries will exhibit different kinetic 

profiles. Siepmann et al. examined the impact of aspect ratio (ratio of width to height) on 

drug release profiles.29 Siepmann et al. found that increasing the aspect ratio, or 

increasing the planarity, of a drug delivery system resulted in quicker drug release 

kinetics.29,44  
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Chapter 3: Bio-MEMS in Drug Delivery 
 

Microelectromechanical system devices, or MEMS, are micro-scale devices that 

have a distinct electrical or mechanical action.45 Biomedical MEMS, or Bio-MEMS, are 

simply MEMS devices with biomedical applications.45 Bio-MEMS can be used for a 

large number of physiological applications, including biosensing, drug delivery, 

microstructure support (stenting), tissue engineering.45  

Bio-MEMS are usually fabricated through lithography.46 Lithography involves 

cutting micro/nano-scale lines through sacrificial polymer coatings atop the desired 

substrate material. The polymer coatings are then removed through etching either with 

chemicals or light leaving behind a patterned substrate. The process is then repeated over 

multiple layers of sacrificial polymer layers and substrates until the desired design is 

obtained.46  

 

 

 

 Figure 17: Overview of photolithography.46 Reprinted with permission from Elsevier. Copyright 

2013.  
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 3.1 Microneedles    

  A large area of interest for BioMEMS drug delivery systems is transdermal 

delivery of drugs.46 Drugs that are taken orally often are destroyed by the gastrointestinal 

tract, pass through unabsorbed or are rapidly absorbed and metabolized by the liver. 

Drugs that are susceptible to these disadvantages are often injected directly into the 

patient with a needle, however, needles are generally an unpopular alternative.47,48 

Microneedles, however, provide the opportunity for painless and efficacious drug 

delivery. The skin’s transport barrier, the stratum corneum sits 20-50 µm from the surface 

of the skin, while the nerves are usually a few hundred microns below the surface of the 

skin.49 Furthermore, the skin represents a more attractive target for vaccine delivery due 

Figure 18: Microneedle vs. Hypodermic needle. The microneedles can sit high enough to 

avoid pain sensation, but also penetrate low enough to allow for effective delivery of 

therapeutic agents.173 Copyright 2014. 
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to its highly immunoactive property.50,51 There are several approaches to fabricate a wide 

array of narrow, sharp microneedles.46,52–57 Most fabrication procedures involve 

photolithography to etch silicon substrate with either plasma (dry etching) or with a 

strong acid/base (wet etching). These processes allow for the fabrication of both hollow 

and solid microneedle arrays in a multitude of geometric formulations.46,58–61  

 Solid microneedles are conceived to be used a pretreatment step to puncture the 

stratum corneum. Then therapeutic agents can be applied to the skin and easily diffuse 

through the holes created by the solid microneedles. This technique was first exhibited in 

vitro fifteen years ago and was then rapidly translated to deliver insulin and genetic 

vaccines in vivo.46,58,62,63 Recently, this technique is being used with human patients and 

Figure 19: Scanning Electron Microscope images of microneedles. 
(a) A sample of 20x20 array of microneedles . (b) A zoomed in view of 

the microneedle tip.58 Reprinted with permission from John Wiley and 

Sons. Copyright 1998. 
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will soon incorporate more complicated therapeutic agents such as elastic liposomes and 

prodrugs to increase the delivery and slow down natural healing of the holes created by 

the microneedles.46,64–67A particular challenge is to keep the pretreated pores open for an 

extended period of time so that the drugs can properly diffuse through the skin layer. 

Studies have found that microchannels will close within a few hours without any 

intervention.68–70 With increasing research in the field of solid microneedles, there has 

been a shift towards finding new ways to utilize the technology for biomedicine. Studies 

have found that microporation created by solid microneedles can lead to an increase 

collagen regeneration in the skin which has led to the commercial release of a steel 

microneedle roller, called Dermaroller ®, in 2004.71,72  

 Coated microneedles take the concept of solid microneedles one step further. By 

coating solid microneedles with the therapeutic agent, the drugs are delivered directly 

into the micropores formed by the device.73,74 A unique challenge to this approach is that 

the dose that can be administered each time is limited to the surface area of each 

microneedle surface; thus this method is restricted to sub-milligram doses.73 Projects 

have focused on developing shapes and patterns that can maximize the surface area of the 

microneedles. Some common patterns and shapes are arrow-heads, sawteeth, slots and 

pockets that are fabricated into the needle shaft.46,75–78 In addition to altering the pattern 

and shape of the microneedles, there has been a shift into developing novel coating 

formulations so as to maximize the loading potential, protect the therapeutic agent, and 

enhance the dissolution. Many polymer, polysaccharide and gum formulations have been 

studied and tested for this purpose.46,73,76 In addition to engineering new coats, there has 
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been focus on also developing effective ways to apply the coat to the microneedles. Some 

explored techniques include painting, spraying, and immersion. Layer-by-layer 

techniques have become increasingly popular because of the ability to precisely control 

the coat thickness and area.79,80 Dose controlling, however, becomes a more prominent 

challenge when attempting layer-by-layer deposition. The drug coated will be delivered 

more rapidly to the needles that to the base of the array. If done properly, however, it is 

possible to take advantage of this phenomenon to develop a dual-mode delivery system.46  

Figure 20: Coated microneedle layer-by-layer fabrication process. The coated microneedle pattern is first 

micropatterned onto a substrate. That substrate is then deposited with the therapeutic agent via layer-by-layer 

film deposition to allow for controlled release in vivo.174 Reprinted with permission from Nature Publishing 

Group. Copyright 2013. 
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Another fabrication method includes creating porous microneedles with the active agent 

inside the needle shaft and then allowing it to diffuse out after penetration. Lastly, the tip 

of the needles could be fabricated out of a degradable polymer coating that is then 

detached and left in the skin as demonstrated in Figure 20. Passive diffusion using coated 

microneedles is an attractive therapeutic options because it allows for slow diffusion of 

the active agent. It has been used to deliver hormones, vaccines, adjuvants, DNA and live 

viruses.46,81–92 A particular challenge with bioactive agents such as the ones listed is 

developing a method to maintain the stability of the agents over a long period of time 

especially when subjected to the physical and chemical constraints of the microneedle 

arrays.93 

 Solid microneedles are limited by the diffusion rate of the drug and the resealing 

of pores created in the skin; coated microneedles are limited by the complicated 

fabrication process and the difficulty for long-term storage. Hollow microneedles can 

potentially delivery large doses of liquid therapeutic agent via infusion, similar to 

conventional hypodermic needles.46 Hollow microneedles avoid the challenge of 

diffusion limits and storage issues, however, present their own challenge through a more 

complicated fabrication process that involves intricate geometries. In particular, hollow 

needles channels weaken the shaft structure and increase the danger of breaking off while 

embedded in the skin. Furthermore, there is a need to develop a method for control to 

close the needle shaft opening so as to prevent the drug from leaking out until ready for 

delivery. Simultaneously, the shaft geometry and size must be such that the channel is not 

plugged up by the tissue that it penetrates but must be sharp and strong enough so that the 

microneedle can penetrate the dermis and stratum corneum to reach a pharmaceutically 



29 

 

and biological active site of the skin anatomy.46 While these challenges are associated 

with the engineering and fabrication of the microneedle, some of the problems can be 

avoided logistically. Developing a rigid insertion protocol or adding accessories like 

Figure 21: Scanning electron microscopy angled image of hollow microneedles. The image is obtained 

at 45 angle. (a) Image of 614 12 m long array of microneedles. (b) Image of 710 10 m long 

microneedle array. (c) Image of 710 10 m microneedle. (d) Zoomed image of 710 10 m individual 

microneedle. The base diameter of the microneedles is 226 5m.175 Reprinted with permission from The 

Royal Society of Chemistry. Copyright 2011. 
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electronic impactors and vibrating actuators can allow for reliable insertion of hollow 

microneedles without damaging or clogging the needle.46,94–98 Hollow microneedles were 

first built in two-dimensional arrays and had the shaft running parallel to substrate layer 

from which it was formed.99 This fabrication pattern limited the number of microneedles 

that could be fabricated in each array but made it easier to include extra patterns such as 

barbed tips, microfilters inside the base of the needle shaft, nanofilters inside the tip of 

each microneedle and even small pockets that allow for gas lift to precisely control the 

infusion of the liquid therapeutic agent.46,100–104 Three-dimensional microneedle arrays 

contain simpler patterns but allow for a larger subset of possible geometries that have 

been examined and tested. Potential geometries include “blunt cylinders, beveled 

Figure 22: Micrographs of hollow cylinder microneedle geometries. (A) Blunt cylinders. (B) 

Beveled columns. (C) Metal Conical. (D) Off-centered volcano style (E) Citadel-style. (F) 

Sawtooth-style.46,59,105–109 Reprinted with permission from Elsevier. Panels A, B: reprinted with 

permission from Springer. Panels C-F: Reprinted with permission from IEEE Copyright (2005, 

2005, 2007, 2003)  
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columns, metal cones, volcano-shaped microneedles with channels on the slope of the 

peaks, sawtooth microneedles, and citadel-shaped microneedles opening at the sides of 

the shaft to avoid coring.”46,59,105–109 Some needles can cover the opening of the shaft 

with a gold cap to keep the liquid therapeutic agent within the microneedles and prevent 

premature leakage. When the microneedles is pushed up against the skin’s surface, the 

gold cap ruptures and allows for the unhindered infusion of the fluidic drug.110 Recently, 

a variety of hollow microneedles have entered and completed the FDA clinical trials for a 

multitude of applications including, insulin pumping, rabies vaccination, polio 

vaccination, and glucagon injections.46,111–117  

Microneedles have also been used for both ocular and nasal drug delivery.46,118,119 

The microneedle has been added to some vascular stents and vascular wraps to 

administer drugs that will prevent restenosis of the vascular wall.46,120,121 Microneedles 

have also been added to other drug delivery strategies such as iontophoresis and 

electroporation.46,122–126 Overall, microneedles are a unique and important field of bio-

MEMS drug delivery and have a bright future. New studies and integration of external 

novel concepts will allow the biomedical and medical community realize the potential of 

the microneedles for drug delivery. More importantly, advances in microfabrication 

techniques for precision, accuracy and control will allow for large-scale generation of 

highly efficacious drug delivery systems to allow for painless, hassle-free insertion of 

drugs via dermal and subcutaneous pathways.  
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3.2 Polymer/Hydrogel Gastrointestinal Patches 
 

 Many drugs require oral delivery rather than intravenous or intramuscular 

injection. There are a large number of drugs and doses that limit the universality of 

microneedle based drug delivery. Furthermore, oral drug delivery does offer the 

advantage of increasing patient compliance and patient safety.127,128 There is a shift 

towards developing novel “peptide, protein, biopolymer and macromolecular [based] 

drugs for treatment of a variety of diseases.”127 Unfortunately, these drugs, when 

administered orally, will often fail to achieve the desired clinical response. This is due to 

multiple factors, “including: (i) a low mucosal permeability of a drug; (ii) the 

permeability of a drug being restricted to a particular region of the gastrointestinal (GI) 

tract; (iii) the low solubility of a compound, resulting in a low dissolution rate in mucosal 

fluids; and (iv) a drug being unstable in the GI environment, resulting in its degradation 

before absorption.”127,129 The most important limiting factor for oral bioavailability of 

these drugs is “luminal enzymatic hydrolysis and low membrane permeability.”127,130 

Overall, in order to increase the oral bioavailability of these drugs, they must overcome 

the harsh environment of the multitude GI compartments and must maintain a long 

residence time in the GI tract. To create systems that can survive the stomach, there have 

been attempts to create microspheres and nanoparticles with protective coatings made 

from lipids or other polymers, similar to encapsulation. These systems offer a unique 

method to pass through the stomach and also increase the transport of the drugs through 

the intestinal walls.127,131–135 In addition to protective coatings, in order to increase 

residence time in the GI tract, several systems have been tested including, magnetic 

systems, gastric retentive units and polymers with particularly strong mucoadhesive 



33 

 

properties.127,136–143 Furthermore, there have been studies that have examined the 

efficiency of non-specific mucoadhesive polymers and cytoadhesive agents to target 

specific sites in the small intestine.127,129,144–146 All of these advancement are promising 

when it comes to delivering large molecules, however, none of them have been proven to 

be a solution for safe oral administration.127  

 A proposed solution to the problems of oral drug delivery is developing a 

multilayered patch device that is similar to transdermal patches, such as nicotine or 

contraceptive patches.127,147–149 These patches “comprise layers of thin, flexible 

membranes; an impermeable backing; a drug reservoir; a rate-controlling membrane; and 

an adhesive.”127 When attached to the desired substrate, skin or GI wall, the membrane 

will regulate the rate of drug delivery to keep the drug within the therapeutic window. 

There has been some recent success with these buccal patch devices for drug delivery via 

the oral mucosa.127,150–153  

Figure 23: Three types of drug delivery patches. Each combination 

will result in a different drug delivery kinetics and dosing.176 Reprinted 

with permission from Elsevier. Copyright 2006. 
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 The first GI patch for oral drug delivery was the GI-mucoadhesive patch system 

(GI-MAPS) developed by Eaimtrakarn et al.130,154 The patch contained “four layers: (i) a 

backing layer made of a water-insoluble polymer to protect protein drugs from enzymatic 

hydrolysis; (ii) a surface layer made of a polymer sensitive to intestinal pH; (iii) a drug-

carrying middle layer; and (iv) an adhesive layer between the middle and surface layers 

to generate a high concentration gradient between the patch and intestinal enterocytes.”127   

  

The group inserted the patches intradudoenally, to bypass the stomach, and test the 

mucoadhesion while tracking the location of the patch system through the GI tracts of 

fasted male Wistar rats.130 They also tested the patches sensitivity to varying pH 

throughout the different locales of the GI system. They tested three different pH-sensitive 

polymers, HP-55, Eudragit® L100 and Euragit® S100, as the surface layer of the GI-

Figure 24: Capsule with GIMAPS.127 Reprinted with permission from Elsevier. 

Copyright 2005. 
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MAPS which resulted in delivery of drugs to different locations in the small intestine. 

They observed a correspondence between pH levels at different locales of the intestine 

with the threshold of the pH-sensitive polymers. The pH-sensitive polymers degraded at 

their pH threshold leaving behind the mucoadhesive layer which would then interact with 

the mucosa of the small intestine and be captured. In this experiment, the group tested pH 

values ranging from 6.6 to 7.5 in the duodenum/jejunum and ileum respectively.127,130,154 

They discovered that the HP-55 patches had a pH-threshold of pH 5.5 and mostly located 

to the duodenum; the Eudragit® L100 patches had a dissolution threshold of pH 6.0 and 

mostly stuck to the jejunum mucosa; and the Eudragit® S100 patches dissolved at pH 6.8 

and were retained in the distal ileum.127,130,154 The group then tested each polymer 

patches’ efficiency at targeting particular locations of the small intestine in male beagle 

dogs. To model drug release, the group loaded the patches with 30mg of fluorescein and 

monitored the plasma fluorescein levels. After this study, they found that HP-55 and 

Eudragit® L100 patches reached peak fluorescein levels at 2.3 and 3.3 hours, 

respectively, while Eudragit® S100 patches delayed the release by 2.3 hours and then 

reached peak leavels 5 hours after insertion.127,130,154 Lastly, the group tested the patches’ 

ability to release recombinant human G-CSF. The group loaded the GI-MAPS with 

125g of recombinant human G-CSF and then monitored white blood cell counts. The 

pharmacological availability of G-CSF when delivered via GI-MAPS was 5.5% for HP-

55 patches, 23.0% for Eudragit® L100 patches and 6.0% for Eudragit® S100 patches. 

They hypothesized that the Eudragit® L100 patches resulted in the highest 

pharmacological availability because the hydrolytic enzyme activity and intestinal 

content is lowest in the jejunum where the Eudragit® L100 patches located. For delivery 
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of recombinant human G-CSF, the Eudragit® L100 patches outperformed its GI-MAPS 

counterparts, other colonic delivery systems and enteric effervescent systems.127,155,156 

 To further improve on GI patches, Eaimtrakarn et al. set out to develop a patch 

with increased drug loading space by removing the mucoadhesive layer, termed drug-in-

adhesive patches.157,158 The new patch contained “three layers: (i) a backing layer of 

ethylcellulose; (ii) an enteric polymer membrane of HP-55; and (iii) a new drug-carrying 

layer, based on Carbopol®, loaded with 30 mg of fluorescein or fluorescein-dextran as a 

model drug.”127 Each patch loaded with 30 mg of fluorescein was comparable to a 

compressed fluorescein tablet that contains 30 mg of dye. The group tested the patches’ 

ability to elute drugs in vitro by placing the patches in phosphate buffer pH 7.4 at 37C. 

They found that the patches eluted the first 50% of fluorescein two times slower than the 

tablet confirming the sustained release characteristics of the patches. In vivo studies in 

beagle dogs with fluorescein loaded patches resulted in a “mean residence time of 

Figure 25: Dissolution of fluorescein from patches (circles) and tablets (squares).157 

Reprinted with permission from Elsevier. Copyright 2003. 
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fluorescein in plasma…1.5 times greater than tablet preparations.”127 

 The group also tested the drug-in-adhesive patches in human volunteers by 

observing the release of caffeine as the model drug. They loaded the patches with 50 mg 

of caffeine and administered 120 patches by enteric encapsulation. Both fasted and fed 

human volunteers were administered the drug-in-adhesive patches and the group 

monitored caffeine release by examining salivary caffeine excretion. Eaimtrakarn et al. 

also established a control by examining the immediate release of caffeine in fasted 

individuals which produced a mean maximum caffeine excretion rate of 2g/min at four 

hours.127 The drug-in-adhesive patches under fasted conditions exhibited a mean 

maximum excretion rate of 1.75g/min at six hours which is a lower mean maximum 

Figure 26: Salivary caffeine excretion rate vs. time under fasted conditions. The enteric capsules 

containing caffeine (square) has a lower residence time than the caffeine patch system (circle).158 

Reprinted with permission from Elsevier. Copyright 2002. 
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excretion rate than the control but a higher residence time. In the fed human volunteers,  

the control and patch systems had similar kinetic release rate with caffeine appearing the 

saliva two to three hours after administration. This indicated that the presence of food 

extended the gastric emptying time of the capsules containing the patches. The group 

concluded that the patches resulted in a longer mean residence time of caffeine in the 

small intestine under both fasted and fed conditions.158   

  

 

 

Figure 27: Salivary caffeine excretion rate vs. time under fed conditions. The enteric capsules 

containing caffeine (square) has a lower residence time and lower mean maximum salivary excretion rate 

than the caffeine patch system (circle).158 Reprinted with permission from Elsevier. Copyright 2002. 
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 In addition to GI-MAPS, and drug-in-adhesive patches, Shen et al. developed an 

alternative patch system that contains three layers: "(i) a mucoadhesive layer; (ii) a layer 

of drug-loaded microspheres partially immersed in the mucoadhesive layer; and (iii) an 

impermeable membrane encompassing the microspheres.”127  

  

 

Shen et al. fabricated the patches by cross-linking bovine serum albumin (BSA) 

microspheres 10-30 microns in diameter and loading them with one of the three model 

drugs, sulforhodamine B, phenol red, or fluorescein isothiocyanate (FITC)-dextran. They 

then uniformly dispersed the microspheres into a five-micron thick Carbopol® and pectin 

mucoadhesive layer. The mucoadhesive layer was then covered with an ethylcellulose 

layer. The group then tested the release of sulforhodamine B from four millimeter patches 

in vitro by immesersing the patches in phosphate buffered saline (PBS). They discovered 

Figure 28: Design for microsphere GI drug delivery patch.127 Reprinted with permission from 

Elsevier. Copyright 2005. 
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that the 95% of the drug released from the side that contained the mucoadhesive layer. 

Shen et al. then tested the patches ex vivo across an explanted Sprague Dawley rat 

intestine section. The explanted intestine section with the patches attached to the surface 

were then immersed and infused with PBS with a flow rate of 0.05 ml/min. The group 

then monitored the concentration of drugs in the exiting PBS. The control was 

determined by injecting the same quantity of drug directly into the into the intestinal 

lumen. All three model drugs were found to have enhanced transport across the intestinal 

wall when administered via the patch as compared to the control. The group determined 

that the enhanced drug transport was particularly due to the localization of the drugs at 
Figure 29: Release of model drugs from patch vs. control groups. In each graph the patch (square) shows greater 

drug release than the control (circle). (A) Sulforhodamine B. (B) Phenol red. (C) FITC-dextran.159 Reprinted with 

permission from Springer. Copyright 2002. 



41 

 

the intestinal wall allowing for a higher concentration gradient which allows the patch to 

maintain unidirectional diffusion in a direction orthogonal to the intestinal wall.127,159  

 GI patches offer a unique ability to improve the efficacy for oral drug delivery, 

maintain a safe dosage and allow for controlled drug delivery. The systems are optimized 

and engineered to perform multiple functions using the same basic platform. The future 

of hydrogel patches are bright and future studies on how GI patches can be further 

developed to allow for more efficient and efficacious drug delivery. Moreover, the 

discovery and creation of new materials, in particular biocompatible and biodegradable 

hydrogels will allow for novel GI patches that can allow for more regulated and long-

term drug release.   
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3.3 Self-Folding Drug Delivery Systems 
 

 Self-folding devices for controlled drug delivery have a bright future. Self-folding 

devices have been examined as potential microsurgical tools. In general, polymer based 

self-folding devices are fabricated by combining a swellable polymer bilayer to allow for 

the folding actuation. Through self-folding, the complicated two-dimensional structure 

can be turned into asymmetric three-dimensional structure with an increased number of 

possible mechanical actions.46,160,161 For example, Figure 30 shows a six-panel two-

dimensional cruciform shape that can spontaneously fold into a three-dimensional hollow 

cube that is 500 microns wide. The actuation component is added to the system   

 

Figure 30: Self-folding two dimensional device that can spontaneously create a cube.161 Reprinted 

with permission from Elsevier. Copyright 2007. 
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during the fabrication process of the two-dimensional device. Each panel is fabricated 

with a different functional element that leads to differential stresses on the overall frame 

and paneling in the structure.46,160 The combination of differing stresses on each panel 

structure at specific time intervals, allows for the two-dimensional structure to fold into a 

three-dimensional cube.  

 Similar folding mechanisms can be developed with copolymer mixtures.160 

Boncheva et al. developed a method to demonstrate self-folding of two-dimensional 

planar sheets to create three-dimensional spherical shells using a polydimethylsiloxane 

(PDMS) shells and magnetic force. The group had to develop PDMS elastomers that are 

were embedded with magnetic dipoles. The self-folding shape configuration was mostly 

driven by the interaction between the elastic bending forces and the magnetic 

forces.160,162 Randhawa et al. developed a microchemomechanical system (MCMS) that 

was composed of polymer triggers on stressed metallic thin films allowing for chemically 

actuated gripping devices. The MCMS devices were essentially wireless microsurgical 

tools that folded and unfolded upon exposure to enzymes like trypsin and cellulose.163,164 

In general, self-folding polymeric devices are mostly reliant on differentially stressed 

layers to allow for the creation of curved structures.160 
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Self-folding drug delivery devices allow for unidirectional release of loaded 

therapeutic agents.160 He et al. developed a three-layered, polymer-based, mucoadhesive 

drug delivery system “consisted of a swelling layer, a non-swelling layer and a 

mucoadhesive (drug loaded) layer.”160,165 The group crosslinked with swelling layer with 

a pH-sensitive poly(methyl methacrylate) (PMMA)-based hydrogels. They also 

crosslinked the non-swelling layer with a poly(hydroxylethyl methacrylate) (PHEMA)-

based hydrogel, which also acted a diffusion barrier. The mucoadhesive layer was 

composed of poly(vinyl alcohol) (PVA) and Carbopol® along with the therapeutic 

agent.160,165 As exhibited in Figure 31, the mucoadhesive layer was in complete contact 

with the explanted small intestine. This ensured unidirectional release of the drugs into 

the small intestine. Furthermore, the PHEMA layer acted a diffusion barrier and thus the 

drug release from the device was lower than the control experiment.160,165 The 

unidirectional, controllable release of the drug increases the drug’s efficacy, reduces the 

Figure 31: Three-layered, polymer-based, mucoadhesive self-folding drug delivery system. The system 

contains a swelling PMA hydrogel, a non-swelling PHEMA hydrogel and a drug loaded PVA/Carbopol® 

mucoadhesive layer. (A) Schematic of device in action. (B) Picture of the device in action on a explanted 

porcine small intestinal surface.165 Reprinted with permission from Elsevier. Copyright 2006.    
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required dosage and also decreases the number of side effects.  

 Self-folding device also allows for spatio-temporal control of drug delivery. 

Kalinin et al. used computer simulations to demonstrate the release of chemical agents 

from “porous, self-folded cube over time-scales ranging from a fraction of a second to a 

human life-time by varying” the cube size and pore size.160,166 They discovered that 

spatial control was dependent on the shape of the drug delivery device. Furthermore, 

controlling the pore diameter and thickness of the device wall allowed for temporal 

control of the drug.160,166  

 Recently, in 2014, Malachowski et al. developed a stimuli-responsive 

chemomechanically controlled gripper device termed theragippers. The grippers were 

Figure 32: Spatio-temporal control release of polymer drug delivery device. Plot 

depicting the release of drug s in a few seconds to the life span of a human showing the 

relationship between cube size, pore size and the length of drug release form the device.166 

Reprinted with permission from John Wiley and Sons. Copyright 2011.  
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fabricated using alternating rigid panels of poly(propylene fumarate) (PPF), a 

biodegradable and photopatternable polymer, and flexible hinges of poly(N-

isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The pNIPAM allows for 

thermally responsive capability for the grippers to actuate at a temperature above 32ºC. 

The rigid PPF panels ensure that the grippers have sharp tips to penetrate the tissue. 

Lastly, the porous polymers allow for controlled release of therapeutic agents from the 

theragrippers. The group then tested the theragripper’s ability to release mesalamine, an 

anti-inflammatory drug for inflammatory bowel disease (IBD), and fluorescein, a model 

drug. The group also tested the theragripper’s mechanical attachment to tissue in vitro to 

model flow conditions that would be experienced in the GI tract. Overall, Malachowski et 

al. found that the polymer based theragrippers allow for absorption of drugs and slow 

controlled release of drugs over a period of a week.167 
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Figure 33: Schematic diagram and image of drug-eluting theragrippers. (A) 

Schematic of theragrippers fabricated with rigid PPF paneling and flexible stimuli-

responsive pNIPAM hinges. (B) The threagrippers are closed at 4ºC and then open, 

flip, and close when exposed to 37ºC. (C) A conceptual depiction of the theragrippers 

attached to colonic wall releasing a fluorescent drug for spatio-temporally controlled 

drug delivery.167 Reprinted with permission from John Wiley and Sons. Copyright 

2014. 
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Chapter 4: Paraffin Wax for Drug Delivery  
 

4.1 Introduction 
 

 With the recent development of microgrippers, metallic, tetherless, 

thermobiochemically actuated microsurgical tools, has opened up a variety of potential 

opportunities for biopsy and drug delivery. The microgripper actuation is based on a 

fabricated mechanical stress layer that allows for the device to fold.164 Actuation can be 

dependent on temperature or chemical-stimuli. Paraffin wax is a material of particular 

Figure 34: Schematic representation of side (left) and top (right) views of the fabrication 

process for microgrippers. (A) The bimetallic joints (orange and light gray) are thermally deposited 

over the sacrificial layer (blue) and silicon (dark gray). The chromium layer (light gray) will develop 

a tensile stress during thermal deposition. (B) The nickel paneling (green) and the polymer trigger 

layer (red) are patterned over the bimetallic layer. (C) The sacrificial layer is dissolved to remove the 

microgrippers from the silicon wafer. (D) When stimulated the polymer trigger layer softens 

allowing for the bimetallic layer to flex.164 © 2009 by The National Academy of Sciences of the 

USA. 
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interest for thermally-stimulated actuation. Figure 34 depicts the fabrication process for 

microgrippers. The polymer trigger layer can be any layer with enough mechanical 

strength to keep the gripper open until actuation. Polymer trigger layers of interest are 

those that can be specifically optimized to allow for actuation at predetermined 

temperatures and chemical stimuli. 

 Paraffin is a soft solid derived from petroleum, coal or oil shale. The material is a 

mixture of long hydrocarbon chains that contain between twenty and forty carbon atoms. 

It exhibits unique physical properties as well, with a melting temperature slightly above 

37ºC and a boiling point above 370ºC.168 Because of its melting temperature of 37ºC, 

paraffin wax is a great material choice for a polymer trigger layer since body temperature 

is 37ºC.  

Figure 35: Paraffin wax.177 © 2013 Googana Exports PVT. LTD. 
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4.2 Background 
 

 Historically, wax has been a material of interest for controlled drug release. 

Specifically, carnauba wax, a naturally occurring wax derived from the leaves of the 

palm Coperinicia pruniferia has been studied for potential drug delivery applications. 

 In 1993, Huang et al. examined an acrylic polymer-wax matrix system for 

sustained-release table for diphenhydramine hydrochloride (HCL). The group combined 

carnauba wax with Eudragit L-100®. The group used lactose as a filler to achieve the 

desirable tablet size. To examine the effect of carnauba wax and Eudragit L-100 on the 

release of drugs, Huang et al. studied the release of drugs in varying polymer-to-drug-to-

wax ratios.169  

Figure 36: Effect of varying polymer, drug, and wax ratios on the release of drugs. 
Polymer:Drug:Wax Ratios - (A) 2:1:1. (B) 1:1:1. (C) 1:2:3. (D) 0:1:1.169 Reprinted with 

permission from John Wiley and Sons © 1994. 
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As is depicted in Figure 36, formulation D, the formulation with only wax and drugs 

resulted in the fastest release of the drugs. This indicates that wax allows for some release 

of drugs, albeit mostly burst release. Formulations A, B, and C allow for the most 

sustainable long-term release of drugs.  

 Even earlier, in 1967, Schwartz et al. examined the release of drugs from wax 

matrices into water. They fabricated the tablets by suspending and dissolving the drugs 

homogenously throughout wax matrices. The group found that drug release data resulted 

in a straight line when the log of the amount of drug remaining in the matrix was plotted 

as a function of time (Figure 37) as predicted by first-order release kinetics demonstrated 

in Equation 6. Interestingly, the rate of release is not significantly altered with different 

levels of initial drug-loading.170   

 

log(𝑊) =  
𝑘𝑡

2.303
+ log (𝑊0 )   [Equation 6] 

Where:  

W = amount of drug remaining in the tablet 

W0 = initial amount of drug loaded in the tablet 

k = first-order rate constant 

t = time  
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 Goodhart et al. examined the release of water-soluble drugs from a wax matrix 

timed-release tablet. The group found that phenylpropanolamine hydrochloride initially 

experienced burst release after which the wax matrix slowly released the drug. After 

optimizing the fabrication process of the wax matrix tablets, which involved the 

optimization of the compression force for the tablet, optimal agitation time for the 

dissolution of drugs in the tablet and the proper size of the tablet, the group tested drug 

Figure 37: Release of various concentration of the drug from the wax matrix. (A) 5% drug 

loaded. (B) 10% drug loaded. (C) 20% drug loaded.170 Reprinted with permission from John Wiley 

and Sons © 1968. 

A 

B 

C 
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release from the tablet formulation. Figure 38 depicts the result Goodhart et al. obtained 

on the release drugs from the wax matrix tablet.  

 

 

Figure 38: Release of phenylpropanolamine hydrochloride from the wax matrix tablet.178 

Reprinted with permission from John Wiley and Sons © 1974. 
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 Of particular interest, is the interaction between channeling agents and wax. 

Dakkuri et al. examined the effect of Povidone, also known as polyvinylpyrrolidone 

(PVP), on the release of tripelennamine hydrochloride from carnauba wax matrices. The 

group created varying formulations for PVP and wax at concentrations of 0%, 5%, 10%, 

and 20%. The group found that within the first thirty minutes, drug was released a much 

quicker rate, in other words, the tablets underwent burst release. They concluded that this 

was a result of the drugs located on the surface released more rapidly than the drug 

embedded in the matrix. Then over time, the channeling agent, PVP, allowed for the 

medium to penetrate the wax matrix and allow for the slow dissolution of drug. Figure 39 

depicts the effect of PVP on the release of drugs from the matrix formulations.171 As 

expected, an increasing concentration of PVP in the wax matrix resulted in an increased 

Figure 39: Effect of PVP on the release of drugs from the wax matrix. Key: 0% (open circle). 5% 

(open triangle). 10% (open square). 20% (closed circle).171 Reprinted with permission from John Wiley 

and Sons © 1978. 
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rate of drug release as well as a higher drug release ceiling. This is likely because of the 

increasing PVP resulting in more water entering the wax matrix to result in the release of 

drug at a quicker rate. Next, Dakkuri et al. tested the release of drug from the wax-PVP 

matrix in simulated intestinal fluid and modified intestinal fluid. Figures 40 and 41 depict 

the results they found after running these experiments.  
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Figure 41: Effect of PVP on the release of drugs from the wax matrix in simulated intestinal 

fluid. Key: 5% (triangle). 10%  (square). 20% (circle).171 Reprinted with permission from John 

Wiley and Sons © 1978. 

  

Figure 41: Effect of PVP on the release of drugs from the wax matrix in modified intestinal fluid. 

Key: 5% (triangle). 10% (square). 20% (circle).171 Reprinted with permission from John Wiley and Sons 

© 1978. 

  

 



57 

 

The two intestinal fluid experiments resulted in slightly different release rates for the 

10% and 20% PVP-wax formulations. The group concluded that 10% was the more 

effective method for drug release rate in GI fluids.  
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4.3 Methods 
 

 The effect of PVP on the release of drugs from paraffin wax was tested by mixing 

various concentrations of wax, PVP and model drugs. The two chemical agents that were 

released from the wax-PVP matrix formulations were fluorescein, a common model drug, 

and Metformin an antidiabetic. 

 For the fluorescein experiments, one gram of wax was mixed with six milligrams 

of fluorescein. Table 1 includes the formulations used in the fluorescein experiments.  

Table 1: Recipes for wax-PVP drug release experiments 

 Negative 

Control 

Positive Control 5% 10% 15% 

Wax 1 gram 1 gram 1 gram 1 gram 1 gram 

PVP 0 mg 0 mg 50 mg 100 mg 150 mg 

Fluorescein 0 mg 6 mg 6 mg 6 mg 6 mg 

 

After the wax formulation was created in a glass vial, it was mixed overnight at 90ºC and 

900RPM. The liquid wax formulation was then cooled at room temperature until solid. 

Once the formula was solidified, the wax formulation in the glass vial was immersed in 

20mL of deionized (DI) water at 37ºC. The glass vials were kept at 37ºC using a hot plate 

to maintain temperature and a Styrofoam cylinder to insulate the vials so as to keep the 

entire vial in a 37ºC environment. Measurements were then taken at intermittent time 

variables by removing 25µL of sample solution, placing it in a 24 well plate and diluting 

it in 475µL of DI water. The 24 well-plate was then placed in a SpectraMax i3 to 
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measure the fluorescence at a 475nm excitation wavelength and 510nm emission 

wavelength. DI water was used as the plate blank. Reference values were also obtained 

by testing the fluorescence of wax-PVP only samples so as to eliminate any potential 

interfering spectroscopic data due to PVP. The SpectraMax i3 setting were set to well 

scan and the software was set to collect 21 data points from each well.  

 Metformin experiments were formulated in a similar manner as the fluorescein 

sample, except 200mg of wax was used for each formulation. The absorbance wavelength 

was set to 250nm. Other SpectraMax i3 settings were kept the same. 

 Contact angle measurements were obtained by creating wax-PVP formulations, 

melting them and depositing it on a glass slides. The wax-PVP samples were then spread 

out evenly over the glass plate using razors. The contact angle was then calculated by 

collecting images from a goniometer.  
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4.4 Results and Discussion 
 

 Drug release experiments were tested with both fluorescein and metformin. 

Fluorescein experiments were run three times, while metformin was run twice when it 

was determined further formulation optimization was required.   

4.4.1 Fluorescein Release 

 

 Fluorescein was selected a model drug due to its consistent use as a model drug in 

multiple controlled drug release experiments. Experiment parameters were slightly 

modeled after theragrippers experiments conducted by Malachowski et al. Total 

experiments were run for 144 hours. Figure 42 depicts the established standard curve 

graph and equation.  
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curve results in an the following equation: Concentration = RFU/7E6. The projection line has an R2 

value of .9814 making it a particularly good predictor for all concentrations within and outside of 

the measured range.  



61 

 

The first six hours of drug release are presented in Figure 43. The data presented 

is a compilation of the three trials with standard error bars. As presented in Figure 43, 

10% wax-PVP results in the least net amount of drug release for the first six hours. All 

three formulations present burst release, with 10% and 5% PVP formulations bursting 

release to around 4.5µg/mL while 0% resulted in burst release to around 6µg/mL. By the 

second hour, however, the 5% formulation continues its burst release trajectory to catch 

up with the control (0%) formulation at around 9µg/mL. From hours two to six, the 5% 

formulation continues in a upward trajectory, while the control and 10% formulations 

level off at around four hours, with concentrations of 12µg/mL and 10µg/mL, 

respectively. The results from the first six hours suggest that the 5% formulation allows 

for the net most release of fluorescein. It is important to note the standard error bars, 
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Figure 43: Fluorescein release from wax-PVP over first six hours. 
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however. As is evident, the standard error bars for each formulation is fairly large at these 

lower concentrations. Thus, it cannot yet be concluded with certainty that the 5% 

formulation is indeed the best option for drug release. However, the data from the 6 hour 

to 144 hour time period in Figure 44 does provide more information on the drug release 

kinetics for each formulation. For the long-term release of fluorescein, the trend 

continues for each formulation, with 5% outperforming the other formulations. After 144 

hours, the 5% formulation nets a release of 31.66µg/mL in the water solution. With 

approximately 19.75mL of water remaining in the vial when that sample was collected, 

that is about 625µg (0.625mg) in the water solution. The initial wax matrix was loaded 

with 6mg of fluorescein. Thus, the 5% formulation nets a release of approximately 

10.42% of the total amount of loaded fluorescein. The control and 10% formulations 

netted a release of 503.63µg (8.4%) and 389.42µg (6.5%), respectively. The decrease in 
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Figure 44: Fluorescein release from 6-144 hours in various wax-PVP formulations. 
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release of the model drug in 10% formulations is not what was expected. It is suspected 

that the extra channeling agent added to much material to the wax matrix and made it 

more difficult for the fluorescein to exit the matrix or for the surrounding medium, water, 

to enter the matrix. The underperformance of the 10% formulation compared to the 

control certainly suggests that the PVP played a large role in hinder fluorescein release 

rather than an inherent barrier within the wax matrix.  

 In order to ensure that the fluorescence readings were only indicative of 

fluorescein release and not PVP release, a reference study was performed. Each 

formulation was created without adding fluorescein so as to eliminate residual 

fluorescence as a result of PVP release. The data presented in Figures 43 and 44 is not 

reduced with the reference values taken into account since the reference values presented 

very low fluorescence and unstable measurements as exhibited in Figure 45. The Relative 

Fluorescence Units (RFU) values for the references are significantly lower than the 

sample RFU values. Furthermore, the inconsistency in the trend data suggests that the 

RFU values measured are likely due to normal noise measurements rather than PVP. 
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Figure 45: RFU values for wax-PVP only references. (A) RFU values for the references only. As is 

clearly evident, there is no consistent pattern with the values over the 6-144 hour time period. (B) 

Comparison of the RFU values for the references compared to the samples. As is evident, the references 

are significantly smaller than the RFU values due to fluorescein release in the samples.  
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4.4.2 Metformin Release  

 

 Similar to the fluorescein experiments, a metformin standard curve was also 

established to develop an equation between optical density and concentration as 

displayed in Figure 46.  

 

Figure 47 exhibits one experiment on the release of metformin from the wax-PVP 

matrices. The data does not indicate any pattern and indicates a significant amount of 

noise. Furthermore, the optical density measurements reported do not include any 

reference values to ensure that additional interaction by PVP is accounted for.  
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Figure 46: Measured Optical Density (OD) vs. concentration for standard curve equation. 

Using the data established in the standard curve, the equation relating OD and concentration is as 

follows: Concentration = OD/.0015. The R2 value is 0.9304 indicating that the equation is good 

prediction for measurements within and outside the range.   
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 An earlier experiment, not included here, indicated some pattern for the 

metformin release that was consistent with the results from the fluorescein experiments. 

Again, however, this data was not reduced with reference values taken from wax-PVP 

matrices to eliminate interaction between absorbance and PVP and does not present any 

significant conclusive results.  
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Figure 47: Metformin release from wax-PVP matrix formulations. (A) 6-144 hours 

does not indicate any clear patterns. Looking at 6-144 hours (B) again does not show any 

pattern regarding the release of Metformin from the wax-PVP mixture.  
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 Figure 48 depicts the importance of including a reference value for PVP as the 

optical density values for the wax-PVP only matrices were high enough to be false 

negative measurements of PVP.  
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values. The measured optical density values for wax-PVP formulations do not apparently exhibit 

a pattern (A). The measured optical density values for wax-PVP, however, are close to the 

measured sample values (B).  
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4.4.3 Contact Angle Measurements  

 

 Contact angle measurements were performed using a goniometer. It was 

suspected that PVP would decrease the hydrophobicity of the wax layer. This is of 

particular importance for the microgrippers as a less hydrophobic microgripper would 

have an enhanced ability to attach to the surface of tissue in vivo. Figure 49 displays the 

results from one contact angle measurement experiments. Each data point was measured 

twenty times resulting in standard error bars.  
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reduction of the contact angle for each wax-PVP formulation. (B) Placed in a linear plot with a linear fit. 
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The contact angle measurement does indicate a slight decrease in hydrophobicity for the 

wax-PVP formulations. In general, however, the decrease in contact angle is not likely 

significant enough to indicate that this would have a large impact in the forces 

experienced by microgrippers. Furthermore, the 5% formulation, which is of great 

interest due to its enhanced fluorescein release characteristics, is not significantly more 

hydrophilic than the control (0%).   

 

  

ANGLE = 100.85 
DEGREES 

Figure 50: Contact angle images of water on the wax-PVP matrix formulations. 
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4.5 Conclusion 
 

 Paraffin wax has not been extensively studied for the release of drugs. Previous 

work has extensively studied the release of drugs from natural wax products, namely 

Carnauba wax. The work from Dakkuri et al. using PVP to utilize channeling agents in 

order to increase the permeation of the wax matrix, does have some translation to paraffin 

wax. PVP did indeed increase the release of fluorescein from paraffin. However, 

Carnauba wax increased the release of drugs with an increasing concentration of PVP, 

while paraffin wax reached a ceiling at 5%. 10% PVP formulations had the opposite 

desired effect. Other experiments not reported with even higher concentrations of PVP, 

15% and 20% were similar to the drug release profile for 10%. More importantly, future 

work needs to be done on the release of actual drugs from the wax-PVP formulations. 

Metformin is a good drug that can be further explored, however, the initial amount of 

metformin loaded into the matrix needs to be optimized through further experimentation. 

Furthermore, at the submission of this thesis, the initial fluorescein wax-PVP experiments 

on microgrippers were being performed. Smaller quantities of wax on microgrippers may 

very well alter the overall release of drugs from the microgrippers.  

 Overall, paraffin wax is a good actuation material for microgrippers. Using the 

work presented in this document can help combine the mechanical actions of paraffin 

wax, with potential drug or dye release applications for microgrippers. Sustained release 

should be the first goal for future experiments. Controlled release would be established 

by optimizing the initial wax and PVP formulations. Additional investigations on the 

versatility of wax would provide extra information for this purpose. 
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