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We characterize terahertz wireless channels for extracting data from nanoscale sensors deployed within
human lungs. We discover that the inhalation and exhalation of oxygen and carbon dioxide causes
periodic variation of the absorption coefficient of the terahertz channel. Channel absorption drops to its
minimum near the end of inhalation, providing a window of opportunity to extract data with minimum
transmission power. We propose an algorithm for nanosensors to estimate the periodic channel by
observing signal-to-noise ratio of the beacons transmitted from the data sink. Using real respiration
data from multiple subjects, we demonstrate that the proposed algorithm can estimate the minimum
absorption interval of the periodic channel with 98.5% accuracy. Our analysis shows that by confining
all data collections during the estimated low-absorption window of the periodic channel, nanosensors
can reduce power consumption by six orders of magnitude. Finally, we demonstrate that for wireless
communications within human lungs, 0.1-0.12 THz is the least absorbing spectrum within the terahertz
band.

Nanoscale communication

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent advancements in nanotechnology have made it possible
to fabricate sensor nodes below 100 nanometers in size using
various types of novel materials. These nanosensors have extra-
ordinary sensing capabilities and can sense a range of information
at molecular level. For example, it is now possible to fabricate
supersensitive nanoscale sensors that can measure chemical
compounds in concentrations as low as one part per billion
(ppb) [1]. Medical researchers are already considering the use
of nanoparticles for targeted delivery of drugs to infected cells
within human body [2,3]. When sensing is combined with these
nanoparticles, they can also collect a range of valuable cell-level
data for early detection of diseases. Wireless communication for
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such nanosensors will be a key enabler for such cell-level data
collection from human body.

Although wireless communication at nanoscale has not been
successfully demonstrated yet, recent simulation studies confirm
that these nanosensors may be able to communicate in the ter-
ahertz band (0.1-10 THz) using graphene as a transmission an-
tenna [4]. Following this development, in this paper, we present
the design of a terahertz Wireless NanoSensor Network (WNSN)
for monitoring human lung. The WNSN continuously measures im-
portant cell-level data inside lung cells and send them back to the
Internet using terahertz communication.

The practicality of the proposed WNSN will critically depend on
the transmission power requirements of the nanosensors to reli-
ably forward (upload) data to the sink. If required power for single-
hop data upload exceeds what could be practically supplied either
through onboard batteries or energy harvesting, more complicated
networking architectures, such as multi-hop routing must be con-
sidered. As multi-hop communication has significant computing
and communication overheads of its own, we focus on duty cy-
cling solutions that would make single-hop communication viable.
In particular, we aim to analyze terahertz channel within human
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lungs and identify unique opportunities that could be exploited to
drastically reduce transmission power requirements for nanosen-
SOrs.

The contributions and novelty of the paper can be summarized
as follows:

e We discover that respiration, i.e., the periodic inhalation and
exhalation of oxygen and carbon dioxide, causes periodic vari-
ation of the absorption coefficient of the terahertz channel.
Consequently, transmission power required for reliable com-
munication varies significantly during a respiration cycle. If
nanosensors are allowed to communicate at any time dur-
ing the respiration cycle, transmission power in the order of
microwatts would be required to guarantee reliable commu-
nication at distance equal to 1 cm, which would be difficult to
secure at nanoscale.

o We found a temporal sweet spot (will be referred to as sweet spot
from now on) in respiration cycle when terahertz absorption
drops to its lowest values. It is located near the end of inhala-
tion. We show that by exploiting the sweet spots, i.e., complet-
ing all communications only during the sweet spotin each cycle,
transmission power requirement for nanosensors can be dras-
tically reduced by at least six orders of magnitude.

e We propose an online algorithm for nanosensors to estimate the
periodic channel by observing signal-to-noise ratio of periodic
beacons broadcast by the nanosinks. Using real respiration data
from multiple subjects we demonstrate that the proposed al-
gorithm can estimate the period and sweet spots of the channel
with 98.5% accuracy, which allows at least six orders of magni-
tude power reduction.

e We conduct a frequency-dependent absorption analysis for the
entire terahertz band. Our analysis reveals that the effect of res-
piration cycle is not uniform over all frequencies. In particular, a
20 GHz wide sub-band between 0.1 and 0.12 THz is found to be
the least affected. Restricting communication to this sub-band
enables further power reduction allowing nanosensors to com-
municate with only 3 pico watts at a distance of 5 cm.

The rest of the paper is structured as follows. We discuss related
work in Section 2. The proposed WNSN for lung monitoring is
presented in Section 3. The effect of respiration on the terahertz
channel inside human lung is analyzed in Section 4. The proposed
channel estimation algorithm that enables exploitation of the
sweet spot is presented in Section 5, followed by its evaluation in
Section 6. We conclude the paper in Section 7.

2. Related works

Current network protocols and techniques may not be directly
applied to WNSNs. In specific, due to the size and energy con-
straints of nanosensors and also high molecular absorption noise
and attenuation in the WNSN channel, designing simple, reliable
and energy efficient communication protocols is one of the active
research areas in WNSNs [5-13]. We would like to highlight one
category of research in this area which is related to current study. It
is known that the quality of communication in the terahertz band
is frequency sensitive due to sensitivity of the molecular absorp-
tion to the frequency [7,10]. That means first, for a given com-
position different frequency regions absorb the energy differently
and second, this absorption pattern over the frequency is composi-
tion sensitive, i.e., different compositions have different absorption
spectra. As a result, selecting an appropriate frequency range for a
given channel composition, i.e., the sub-band with the lowest av-
erage absorption have been well-studied in the literature [5-7,10].
However, none of the aforementioned works have studied human
lung as the communication medium.

Time-varying WNSNs were first introduced in [10-12] where
WNSNs were used for chemical reactor monitoring with the
composition of the wireless medium affected by the ongoing
reactions constantly taking place in the reactor. Consequently,
adaptive communication protocols such as frequency hopping [ 10]
and power adaptation [12,14] have been proposed to provide
reliable communication, which is key to improve performance
of any WNSNs-based application [11,12]. Our current work with
human lungs also deals with time-varying terahertz channel, but
the cause of variation is due to human respiration. In addition, the
communication channel in the lung is periodic which is not the
case in chemical reactors.

Work on the in-vivo WNSNs is rare. In a recent work,
a conceptual WNSN for intrabody disease detection has been
analyzed in which nanosensors are assumed to be deployed in a
hexagonal cell-based architecture in a 3D cylindrical shape [15].
Authors investigate the data transmission efficiency for different
transmission methods such as direct and multi-hop. In another
recent work, the communication in human skin tissues has
been investigated where experimental data for the molecular
absorption coefficient of the human tissues has been employed
to characterize the quality of communication using the same
propagation model that we have used [16]. In both of these
works, the composition of the communication channel between
nanomotes are assumed fixed while in the current study, we try
to characterize the time-property of the terahertz within human
lung and design efficient protocols that utilize the respiratory data
to smartly select the sweet spots.

Challenges and opportunities of using WNSNs for human lung
monitoring were first discussed in our preliminary work [17].
However, as compared with [17], this paper has significant
extensions and new materials summarized as follows. First, in [17]
only local communication within an alveolus cell of a lung has
been investigated while in the current study the terahertz channel
through the entire lung has been analyzed. More analyses and
graphs are also presented on the channel conditions including,
attenuation, molecular noise, SNR and BER. Second, in [17] the
respiration cycles were assumed deterministic and known. In
current study, we have relaxed this assumption, which is more
realistic as evidenced by real datasets. We have proposed an
algorithm to estimate respiration period and analyzed its accuracy
using real datasets. Finally, [17] only investigates the power
reduction opportunities by exploiting the sweet spots while in the
current study we explore further power saving opportunities by
identifying specific frequency sub-bands within the terahertz band
that have lower absorption coefficients than other sub-bands.

3. Proposed WNSN for lung monitoring

WNSNs are expected to sense and control important physical
processes right at the molecule level delivering unprecedented
performance improvement of medical, industrial, biological, and
chemical applications [18,19]. Indeed, researchers now believe
that WNSNs can potentially be deployed inside human body for
more detailed real-time health monitoring, targeted drug delivery,
and so on [18,2].

It is well-known that by monitoring the composition of the
human lung, many diseases such as asthma, bronchiectases
and even lung cancer can be detected at the very early stage
of development [20]. For example, volatile organic compounds
(VOCs) in breath are recently found as a novel biomarker that
can provide precise information for quick diagnosis of many lung
diseases such as asthma [21] and lung cancer [22-24].

In addition, there is a significant progress in developing
nanoscale biosensors that are able to efficiently measure the lung
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diseases biomarkers [25-28]. For example, a silicon nanowire-
based field effect transistor has been reported that is able to detect
VOCs in low concentration as few as ppb [26]. Another study has
demonstrated that a nanosensor consisting of an array of 14 gold
nanoparticle electrodes is able to detect many types of VOCs [27].

Taking these remarkable advancements into consideration, in
this work, we propose a WNSN to remotely monitor human lung
at the molecular level. We first describe the lung structure followed
by the proposed WNSN-based architecture for remote lung cell
monitoring.

3.1. Lung structure

The human lung is the organ of respiration, composed of a
pair of large spongy organs optimized for gas exchange between
the blood and the air (Fig. 1(a)). Each lung consists of millions of
alveolus cells, the functional units of the lungs that permit gas
exchange. Alveolus are found in small clusters called alveolar sacs
at the end of the terminal bronchiole (Fig. 1(b)). A thin layer of
connective tissue underlies and supports the alveolar cells. At the
membrane of alveolus cells, gas exchange occurs between the air
and blood through the extremely thin walls of the alveolus and
capillary (Fig. 1(c)).

Upon inspiration, the intra-alveolar pressure change around
5-6 mmHg within one respiration cycle due to relaxation of the
intercostal muscles and diaphragm. Due to the same reason, the
radii of an alveolus periodically varies between about 0.1 and
0.2 mm. We will later use these variations to harvest energy for
our nanomotes.

Our proposed WNSN-based lung monitoring architecture is
presented next.

3.2. Proposed WNSN architecture

The proposed system aims to measure and report biomarkers
that can help detect lung-related diseases. We target sparse
sampling from several alveoli colonies that have been selected
across both left and right lungs. For this purpose, we propose a
hierarchical WNSN-based solution which includes four levels as
depicted in Fig. 1.

At the lowest level, we assume that we can deploy a nanomote
within each targeted alveolus cell to collect data from the cell. We
refer to these nanomotes as ‘nanocollectors’. Nanocollectors can
be attached to the cell walls by using some bioengineering tech-
niques such as artificial bacteria [29]. Each nanocollector has been
equipped with a nanoscale energy harvester [30] to harvest energy
from pressure variation and cell wall movement during the respi-
ration cycle; a nanosensor [31] to measure the target biomarkers
in the exchanged gases; a nanomemory [32] to save the detected
marker; a nanoprocessor [33] to run the required algorithm and
a nanotransmitter [4] to transfer the recorded markers wirelessly
to a nanoscale remote station or nanosink. A schematic of the pro-
posed nanocollector has been depicted in Fig. 1(d).

In the next level, two nanosinks would be deployed at the
central points of both left and right lungs to receive signals from
many nanocollectors. The nanosinks are similar to nanocollectors
in construction, except they do not have any sensor but instead
have an extra energy harvester that can scavenge energy from RF
waves. RF energy harvesters would allow charging the nanosinks
from outside the human body. Nanosinks transmit the data
received from the nanocollectors to the next level, which is a
macrosink patched to the chest. The macrosink relays the data
received from nanosinks to the user device, a smartphone for
example. The data would be processed by a special software on
the device and the results would be displayed on the user’s device
monitor. For further analysis or to keep the person’s record on a

cloud, the data could be transferred to a remote health server via
Internet.

From the foregoing description of the proposed WNSN, we
see that the nanosinks and the macrosink can be powered easily
using wireless (RF) charging as they are located closer to outside
of the body. However, the tiny nanomotes buried deep inside
the alveolus cells cannot be charged wirelessly from outside. The
only viable option for the nanomotes is to power themselves
using the pressure energy harvester they are fitted with and use
the scant harvested energy wisely to deliver data reliably to the
nanosinks. This poses a formidable communication challenge due
to the significant channel absorption in THz. Indeed, the current
work aims to address this communication challenge by exploring
low absorption time and frequency windows inside human lungs.
Before presenting our solution though, in the following section, we
first take a look at the energy harvesting opportunities and power
requirements for the nanomotes.

3.3. Powering of nanomotes

In this section, the power requirement of the proposed
nanomotes and also possible opportunities to harvest energy from
ambient environment (in-vivo) will be discussed.

3.3.1. Power requirement

The major power hungry components in our proposed architec-
ture are the sensor and transmitter. The required power to reliably
transfer data from the nanocollectors to the macrosink depends on
few parameters such as the distance between the devices and the
composition of the wireless medium, which will be discussed in
Section 4.

The exact power requirement of the nanosensor depends on
the targeted diseases that the proposed architecture aims to dis-
cover. Typically, the power requirement for nanoscale chemi-
cal/biological sensors varies from less than few nW to few uW [35].
However, there is a research trend in the literature trying to de-
sign self-powered nanosensors using some physical/chemical phe-
nomena that create charge in the sensor when it exposes to dif-
ferent materials [36-40]. For example, triboelectric effect has been
employed to design self-powered nanosensors [36]. The triboelec-
tric effect is a phenomenon that contact between two materials
with different triboelectric polarities creates surface-charge trans-
fer. Different materials create different charges that can be used as
a signature to detect the contacted material. As another example,
a biological sensor that is able to detect dopamine' has been
manufactured and tested [36]. Self-powered cholesterol [38], glu-
cose [39,40] and VOCs [41] biosensors have been also successfully
demonstrated.

3.3.2. Energy harvesting

In vivo biomechanical sources such as cell movement and pres-
sure variation are the most promising sources to harvest energy
for biomedical and health-care applications [42,30,43]. Biochemi-
cal reactions inside human body such as cell respiration can be also
considered as a potential source whereas nanogenerator convert
the chemical energy of glucose and oxygen in biofluid into elec-
tricity [44].

In our proposed lung monitoring system, the nanocollectors can
use a piezoelectric nanogenerator to either harvest energy from
the motion due to alveolus cell movement or pressure variation
during the respiration process. According to the literature, up to

1" A class of aromatic amines that plays an important role in the central nervous
renal, and hormonal systems.
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Fig. 1. A schematic architecture of the proposed lung monitoring system via WNSN.

Source: adapted from [4,30-34].

few pW (10~12) can be harvested from motions of human organs in
each respiration cycle using a flexible piezoelectric nanogenerator
of one square micron size [30].

The nanosinks need more power as they need to collect data
from many nanocollectors and transmit data to the macrosink. RF
energy harvesting might be an option for nanosinks, i.e., macrosink
feed the nanosinks via wireless RF transmissions.

3.4. Respiratory system

The quality of communication in WNSN is strongly affected
by the composition of the communication medium [46] which
will be explained in more details in Section 4. It is then
important to identify the composition of the medium in the
proposed architecture. Because the respiratory system affects the
composition of the lung (our communication medium), in this
section we briefly overview the respiratory system.

The blood circulatory system circulates the blood through the
body; carrying oxygen to the cells; collecting the excess water and
CO, which has been produced during cell respiration; and carries
them to the alveolus cells in the lungs (Fig. 1(c)). This process
affects the composition of the all alive cells including the alveolus
cells in lung. Table 1 shows the composition of the in/exhaled air.
While less than 0.04% of the inhaled air is CO,, the exhaled air is
composed of 4%-6% CO,. It also shows that the water molecules
varies from less than 1% to 3%-5% during one respiration cycle.
The normal respiratory rate, known also as eupnea, varies with age,
activities, illness, emotions and drugs [47, pp. 291] and is measured
as the number of breaths taken per minute (bpm). For example, at
rest and healthy condition it could vary from 12 bpm for an adult
to 55 bpm for an infant. In medicine, capnography is the method
to measure the amount of CO, in the inhaled and exhaled air. The
signal that is called capnogram represents the concentration or
partial pressure of CO,. Fig. 2 shows a snapshot of the capnogram of
a given subject that contains two respiration cycles, extracted from
CapnoBase? [48,49]. It shows that the CO, concentration fluctuated

2 CapnoBase which was developed at the University of British Columbia is an
online database of respiratory signals obtained from capnography and spirometry.
It provides respiratory signals such as inhaled and exhaled carbon-dioxide
(capnogram), respiratory flow and pressure. CapnoBase contains many 8 min real
capnogram traces for different subjects in different ages.

Table 1
The composition percentage of exhaled and inhaled air [45].
N2 02 COZ H20 Others
Inhaled air 78 21 0.05 <1 <0.1
Exhaled air 78 13-16 4-6 3-5 <0.1

within one respiration cycle. It starts at a low level at the beginning
of exhalation and raises to its maximum before inhalation starts.

Fig. 3 shows 60 s snapshot of real capnograms of six different
subjects with age ranges from 1 to 59 years that have been obtained
while the cases were all spontaneously breathing, extracted from
CapnoBase. The min/max CO, and pulse width (duration) is
different for different subjects. The respiration also change the
lung volume. The amount of air that usually exists in the lungs
at the end of a regular exhalation is called functional residual
volume (FRV). The amount of air that would be exchanged during
a regular inhalation/exhalation is called tidal volume (TV). Lung
related volumes such as FRV and TV depend on many parameters
such as age, gender, weight, height and exercise. [50]. For example,
based on the age and weight of the subject 4, his FRV and TV would
be approximately 1.1 and 0.3 |, respectively.

3.5. WNSN communication medium

In the proposed human lung monitoring system, there are
two types of wireless media including wireless communication
between nanocollectors and the nanosinks through the alveoli
(alveoli medium); and between the nanosinks and the macrosink
(ToMacro). In this paper, we investigate the alveoli medium which
is the most challenging medium as its composition periodically
varies due to respiration process.

The communication between nanocollectors and the nanosinks
is mainly affected by the alveoli composition that consists of
three main layers including the existing gases in the alveolus
cell membranes, i.e. exchanged gases; tissues (airways and
connective tissue which separates alveolus cells); and blood. On
average, around 90% of the lung volume consists of the gaseous
molecules [51, p. 1124] but the relative thickness of these three
layers and their compositions vary over time due to respiration
system which will be studied in more details in Section 4.2.
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Fig. 3. Variation of the CO, during the respiration in six subjects within one minutes that have been experimentally measured [49].

4. THz channel characterization for human lungs

In this section, we aim to characterize the THz communication
within the human lung or for the alveoli medium to be precise.
We first present a time-varying multi-layer THz channel model,
followed by its evaluation using real capnogram data. A key
outcome of this study is the revelation of a periodic THz

communication channel where the absorption increases and
decreases periodically due to respiration.

4.1. Time-varying multi-layer THz channel model

Radio communication in terahertz band is affected by the
chemical compositions of the medium in two different ways.
First, radio signal is attenuated because molecules in the channel
absorb energy in certain frequency bands. Second, this absorbed
energy is re-radiated by the molecules which creates noise in
the channel [46]. For a given chemical molecule of S;, this

phenomenon is frequency sensitive and characterized by its
molecular absorption coefficient K;(f) at frequency f. For a radio
channel consisting of N chemical species S, S,, . . ., Sy. The overall
absorption coefficient of the medium at frequency f is given as:

N
K(F) =Y mi x Ki(f) (1)
i=1

where K;(f) is the absorption coefficient of molecule i at the
frequency f and m; is the mole fraction, i.e., ratio of the molecule i.
First, let us look at the absorption coefficient of each individual
constituent molecules of the lung as our communication medium.
The lung consists of three main layers including the exchanged
gases (mainly O,, N, CO, and water vapor), connective tissues and
blood vessels. We use HITRAN database [52] to extract absorption
coefficient of the gaseous species but the absorption coefficient of
other species are not available in HITRAN. However, the optical
properties of human blood over 0.1-1.8 THz has been experimen-
tally measured in [53] and the absorption coefficient of the lung
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tissues has been reported in [54] over 0.1-1.8 THz. As the absorp-
tion coefficient of the blood and tissue have been only reported
over 0.1-1.8 THz, we limit our study to this sub-band. Fig. 4 shows
the absorption coefficient of four main molecules that affect the
quality of communication within human lung over 0.1-1.8 THz. It
shows that the main absorbent molecules are human blood and
tissues with average absorption of 190 cm~! and 80 cm™', respec-
tively. Based on HITRAN database, N, and CO, and other gases in
the inhaled air such as Ne, He and Ar do not absorb the THz signal
over 0.1-1.8 THz and their absorption coefficients are almost zero.
Nevertheless, the thickness of different layers and also the
concentration of the gaseous molecules in the lung vary over
time due to respiration. We therefore consider a multi-layer
radio channel with possible time-varying chemical composition
in each layer. We assume there are M layers with 1;(t) denoting
the thickness/proportion of layer j at time t. Then, the medium
absorption coefficient K (t, f) at time t and frequency f is:

ke =350 S m0 x k) 2)
f) = i Aea m: (t) x K

j=1 A i=1 ! 1
where m; ;(t) is the mole fraction of chemical species S; in layer j
at time t and K;(f) is the absorption coefficient of molecules i at
the frequency f. A is the total thickness of all the layers, i.e., the
distance between transmitter and receiver. The attenuation at time
t, frequency f and a distance d from the radio source is [46]:

iy

C

Alt,f, d) = efED ( (3)

The receivers usually encounter with few types of noises
including the thermal noise (Nthermal) generated by the thermal
agitation of the charge carriers; electronic noise (Elec) from
receiver input circuits and ambient noise from the environment.
The ambient noise in terahertz channel is mainly originated by the
molecular absorption noise (Ngs) which is due to re-radiation of
the absorbed energy by the molecules in the channel [55,56]. The
total noise power at the receiver therefore is:

N = Naps + Nthermat + Netec + Nothers (4)

where Noers iS the noise from other probable sources. Ninermal
and Nge. depend on the receiver's technology in use. There

are some promising evidences that shows the Graphene-based
nanoscale transceivers have a very low thermal noise that means
molecular noise is expected to be the dominant source of noise in
the channel [56]. The power spectral density (PSD) of molecular
absorption noise, Naps(t, f, d) is given by [46]:

Nas (£, f, d) = kgTp(1 — e X©Nxd) (5)

where Ty is the reference temperature 296 K and kg is the
Boltzmann constant. Let U(t, f) be the power spectral density of
the transmitted radio signal at time t and frequency f. The signal-
to-noise ratio (SNR) at time ¢, frequency f and distance d is:

uc, f)
A(t,f, d)Nabs(t,fs d) ’
Consider a radio channel consisting of two nodes separated by a

distance d, then at time t, the Shannon capacity over a sub-channel
from B; to B, Hz is:

SNR(t, f, d) = (6)

By
Capacity(t, d) = / log, (1 + SNR(t, f, d))df . (7)
By

Assuming on-off keying (OOK) [57] as the modulation schema,
the average error probability (BER) at time ¢t and distance d can be
expressed as [13,58]:

B
BER(t, d) :/ 0 (\/SNR(t,f, d)) df 8)

By
where Q (x) is defined as:

Q) =/x \/;;nefozdx.

Over a given period of time, i.e. N discrete time stamps, the
average BER at distance d can be obtained as:

N
3" BER(t;, d)

BER(d) = ’:‘T 9)
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Fig. 5. Lung simulation for subject 4.

4.2. Simulation with real capnogram data

Now, we are ready to analyze the quality of communication
between nanocollectors to the nanosinks, i.e., alveoli medium.
First, we simulate the variation of lung volume and composition
using the capnogram data of the fourth subject (male, 12 years,
37 kg weight). His capnogram over 60 s from CapnoBase [49] has
been depicted in Fig. 5(a).

On average, around 90% of the lung volume consists of the
gaseous molecules [51, p. 1124] but it varies during the respiration.

The lung volume variation, AV (t), can be readily calculated as:
AV (t) = C x AP(t) (10)

where AP(t) is the intra-alveolar pressure at time t (that can
be approximated by the capnogram data), C; is lung compliance
coefficient that is defined as the change in lung volume per unit
change in intrapulmonary pressure [59], usually between 0.1 and
0.2. Using the capnogram of subject 4 and Eq. (10), Fig. 5(b) shows
that the lung volume changes between 1.1 and 1.4 | periodically.
This variation changes the relative thickness of three constituent
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Fig. 6. Channel status over 60 s for subject 4, (a) attenuation (b) molecular absorption noise (c) SNR and (d) BER for a transmission power equal to 1 pW and distance 5 mm
between two nearby nanocollectors. The quality of communication in the channel periodically changes.

layers of the lung (gas, tissue and blood). The relative thickness of
gaseous layer at time t, Az, would be:

Ve (t)
V() + Vpie (t)
where V},+(t) and Vg (t) are respectively, the volume of blood plus

tissue® and air in the lung at time t. V}, (t) is equal to 0.1 x Vg (t)
and Vg (t) would be:

Ag(t) =

Ve (1) = Vo (t — 1) + AV ().

Fig. 5(c) shows that the average proportion of gaseous layer (V)
varies from 92.25% at the end of regular inhalation to 89.25% at the
end of regular exhalation. The maximum and minimum relative
thickness of blood/tissue, V. is also 10.75% and 7.75%.

While the total volume of gas in the lung is variable, the
composition, i.e., the concentration of each gas is also variable

3 For simplification, we assume the relative thickness of blood and tissues are
equal.

over time.? In addition, the membrane of alveolus cells is mainly
affected by the gas exchange process in the lung. In order to
investigate the effect of respiratory system on the composition
of the alveolus cells, we need to obtain the variation of the main
exchanged gases inducing H,0, CO,, O, and N,. We therefore
use data from Table 1 and the capnogram data (CO, variation) to
simulate the gas exchange in the alveolus cell. Fig. 5(d) shows the
variation of mole fraction, i.e., concentration of different gaseous
molecules during the gas exchange process in the alveolus cells for
subject 4 in 60 s. As it can be seen, the concentration of CO,, O,
and water vapor is dynamic. The nitrogen is fixed and around 78%
which has not been depicted.

Having the relative thickness of the constituent layer of the lung
and the composition variation of the gaseous layer over time, we
use Eq. (2) to calculate the absorption coefficient of the medium
(Fig. 5(e)) which varies approximately from 7.25 to 10.25 cm ™! per
respiration cycle.

4 The composition of blood and tissue have a small variation over time which are
ignored in this study for simplification but will be studied in the future works.
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As mentioned in Section 4.1, absorption coefficient character-
izes the quality of communication in the channel, so we expect
variation in path loss, noise and SNR. We assume a transmitted
power equal to 1 pW (1072 W) and a distance equal to 5 mm be-
tween nanocollectors and the nanosink.” Following Egs. (3)—(8),
Fig. 6 shows the resulting attenuation, molecular noise, SNR and
BER in the medium. We would like to highlight two main points.
First, Fig. 6 shows that all the channel metrics (except noise) have
significant variations which is due to respiratory system. The total
path loss in each respiration cycle averagely varies between 73.5 dB
and 84.5 dB which finally translate to variation in SNR (between 0
and 10.5) and BER (between 10~! and 374). In addition, molecular
noise (Fig. 6(b)) has a negligible variation because it is always close
to it maximum possible value (Kg * T0) due to high absorption in
the channel. Second, the channel status is periodic whose period is
regulated by the respiratory rate. In addition, the path loss, noise
and BER in the channel are minimum when the lung contains the
maximum amount of gas at the end of inhalation and the propor-
tion of the tissue/blood is minimum.

As it can be seen in Fig. 6, the quality of communication
(SNR) is dynamic over time and periodically switch between
good state and bad states. However, in each respiration cycle,
near the end of inhalation, there is a temporal sweet spot that
absorption drops to its lowest values and SNR has the highest
value (Fig. 7). It is clear that power consumption of nanosensors
can be significantly reduced by uploading data only during these
sweet spots. However, how to identify the beginning and end
of sweet spots is challenging for resource constrained sensors.
In the following section, we propose and evaluate a sweet
spot estimation algorithm that requires minimal resources for
implementation.

5. Sweet spot estimation algorithm

The aim of this section is to propose an online algorithm for
nanocollectors to estimate the period of the channel in order to
exploit the sweet spots. We assume that time is divided into frames
of duration Ty and in the beginning of each frame, the nanosinks
send beacons for a fixed duration of time T, with Tf much longer
than T,. During the beaconing duration, nanocollectors measure
the SNR of the received beacons. They then use the SNR trace to
estimate the period and the timings of the sweet spots, which can
be used to estimate the occurrence of sweet spots in the future.
An advantage of this method is that continuous beaconing is not
required. Consider an alternative scheme where nanocollectors
send when the channel is good and keep sending until the channel
quality drops below a threshold. After that, the nanocollectors
keep listening to the channel until it is good again. Although this
approachis simple, it requires nanosinks to continuously broadcast
beacons across the lungs which will exhaust the power of the
nanosinks and nanocollectors due to continuous channel sensing.

In order to limit the beaconing and channel sensing, we take
the periodic property of the channel into account and propose
a simple method for nanocollectors to exploit the sweet spots
with minimum resources. First, we explain how sweet spot can be
obtained for a given respiration cycle. We then propose a method
to extend the extracted sweet spot of a respiration cycle to the
future cycles. Finally, we analyze the complexity and overhead of
this method.

5 We will study higher distances in Section 6.
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Fig.7. SNRis a good estimator for the absorption coefficient to exploit sweet spots.
5.1. Sweet spot exploitation for one cycle

Let SNR(t) denote the SNR at time t. Assuming that we know the
maximum possible SNR is SNR,x, then we can define the sweet
spot as the collection of times over which the SNR(t) > 1 SNRpax
where 0 < n < 1is a user defined parameter. If  is big, the width
of the sweet spot window will be small and vice versa.

As the channel is periodic, our proposed method aims to use the
sweet spots of a given respiration cycle to estimate the sweet spot
periods for future cycles which will be introduced in next section.

5.2. Description of the algorithm

The respiration cycle durations for a given person under
different health and activity conditions (rest, walk, run, etc.)
could be different. However, our investigation using real 8-min
lung capnogram profiles of 40 different subjects extracted from
CapnoBase database [49] shows that the average period in a given
condition (here rest) has a small variance (around 5%). For example,
we plot the cycle durations of subject 4 over 8 min (140 cycles) in
Fig. 8. As it can be seen, the duration varies between 3.31and 3.4 s
with a standard deviation of 0.015. Based on these observations, it
seems that average respiration period over a given duration time
of can be used as a good estimation for each individual cycle time
if the subject’s condition does not change.

The details of the algorithm is given in Algorithm 1. The
algorithm takes in three inputs. The first input is the SNR trace
measured by the nanocollector over the beaconing interval. The
trace consists of L ordered pairs (t(i), SNR()) (i = 1,2,...,L)
where SNR(i) is the SNR of the beacon received at time t(i). The
second input is the parameter 7. The third input is the beacon
duration T, which is known to both the nanocollectors and the
nanosinks.

The proposed algorithm aims to estimate a few parameters
which enable the nanocollector to estimate when future sweet
spots happen. Note that a sweet spot begins when the SNR rises
above the threshold n SNRy,,«x and ends when the SNR drops be-
low the threshold n SNRy.x. We say that a sweet spot is com-
plete if both its beginning and end fall within the beaconing du-
ration. The algorithm counts the number of complete sweet spots
in the SNR trace and use this count to estimate the average res-
piration period Tp. Furthermore, the algorithm returns the time
instances f; and f, which are the beginning and end of the last
complete sweet spot in the SNR trace. Given these outputs, the
nanocollectors will estimate that subsequent sweet spots to be be-
ginning (resp. ending) at time instances &; + iT, (£, + iT,) where
i=1,2,3,....



52 E. Zarepour et al. / Nano Communication Networks 9 (2016) 43-57

Algorithm 1: Respiration period estimation from SNR signal.

Inputs: SNR trace (t(i), SNR(i)) (i = 1, 2, ..., L). Parameters
and Ty

Calculate SNR;;,¢x = maxi—q
Calculate A = 1 SNRy;ax
Integer variable count = 0 /| count is the number of complete
cycles

Boolean variable within = 0

|| within = 1(0) if the last time instance is inside (outside) a
sweet spot

forifromLto1step —1do

if within == 0 then

if (SNR(i-1) > X) and (SNR(i) <= A) then

// t(i) This is the end time of a sweet spot

LSNR(i)

,,,,,

within =1
if count == 0 then
| LE=t0

else

=4

f (SNR(i-1) < A) and (SNR(i) >= 1) then
|/ t(i) This is the beginning time of a sweet spot
within = 0
if count == 0 then
L & =1t()

L count =count+ 1

= 1
P ™ count

Outputs: T, {1, &

The algorithm first determines the maximum SNR over the
trace and use this to calculate the SNR that defines the sweet spot
threshold. It then scans the SNR trace backwards in time so that
it can locate the beginning and end of the last complete sweet
spot in the trace, which are output in the variables £; and &,.
The variable count is used to accumulate the number of complete
sweet spots in the SNR trace. The period of a respiration cycle is
estimated by dividing the beaconing duration T}, by the number of
complete sweet spots. Our proposed algorithm therefore ignores
the fractional cycles in the SNR trace. We show with empirical
data in Section 6.1 that this approximation does not cause much
inaccuracy.

5.3. Overhead and complexity of the proposed algorithm

The energy overhead of the proposed algorithm depends
on two parameters namely number of transmitted beacons (L
in the algorithm) and the distance d between the nanosinks
and nanocollectors. We choose the beaconing interval T, to be
30 s so that sufficient number of cycles are included. With a
beaconing interval of 100 ms, the number of beacons sent by a
nanosink is L = 300. The distance between nanocollector and
the nanosinks depends on the distribution and density of the
nanocollectors in each lung. Here, we assume an average distance

of 5 cm between a nanocollector and a nanosink. We will show
in Section 6.3 that if nanosinks use the 100-102 GHz frequency
range to broadcast the beacons then they need only around
70 pico Watts per beacon to successfully deliver the beacons at
distance of 5 cm. This amount of power is reasonable for nanosinks.

Regarding the complexity of the proposed algorithm, nanocol-
lectors need to save and process an SNR trace with L = 300 data
points. The storage requirement is linear in L. The proposed algo-
rithm needs to scan the trace twice, once for computing the max-
imum and once for the for-loop in Algorithm 1. The algorithmic
complexity is linear in L. The currently available nanoscale memo-
ries can read/write a single bit in less than few nanoseconds [60,61]
and this satisfies our application’s requirement. Regarding the pro-
cessing time, theoretically, the switching frequency of nanoscale
transistors such as carbon nanoribbon and carbon nanotube tran-
sistors are around 10 THz [62]; this is good enough for our appli-
cation.

6. Evaluation

In this section, we use simulation experiments to evaluate
the efficacy of the proposed terahertz channel estimation and
sweet spot exploitation algorithm in reducing the transmission
power requirement of the WNSN. The goals of the evaluation are
three fold: (1) investigate the accuracy of the proposed channel
estimation algorithm for tracking the periodic channel and the
sweet spots using real respiration data, (2) quantify the power
reduction opportunities by exploiting the sweet spots, and (3)
explore further power saving opportunities by identifying specific
frequency subbands within the terahertz band that have lower
absorption coefficients than other subbands.

6.1. Accuracy of sweet spot detection

Recall that sweet spot exploitation relies on how accurately
the sensors can estimate the periods of upcoming respiration
cycles. We use the metric mean absolute percentage error (MAPE)
to measure the error in estimating the respiration period (cycle
time), which affect the sweet spot detection in future cycles. We
use the first 30 s of an eight minute respiration trace of a given
person (from capnoBase [49]) to compute the estimated average
period, T, using Algorithm 1. Then, we extract the true periods of
all remaining cycles in the trace (the 7.5 min) using the pulseperiod
function of MATLAB signal processing toolbox. Period estimation
error is obtained as:

1 N
MAPE = —

N 4

i=1

where N is the number of cycles in the remaining 7.5 min trace
and T, ; is the true period of cycle i. Period estimation accuracy is
obtained as 1 — MAPE. Multiplying the number by 100 gives the
accuracy in percentage.

To evaluate MAPE of the proposed estimation algorithm, we
choose 15 subjects among available subjects in CapnoBase and

Tp - Tp,i

T, (11)

Tx(sec)

0 20 40 60 80 100 120 140
Cycle#, x

Fig. 8. The cycle durations over 140 cycles (8 min). The standard deviation of this dataset is 0.015.
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Fig. 10. The average error when the starting point of the algorithm varies for two subjects.

extract their 8 min capnogram traces. Fig. 9 shows the output
of the proposed period detection Algorithm (1) along with the
estimated and real cycle periods (2) for two subjects. We see that
the algorithm works very well and can detect all the cycles. MAPE
for the first subject is 1.7% and for the second subject is only 0.2%.
However, the accuracy of the period detection can be affected by
the starting points of the algorithm because it may only meet a
fraction of a full cycle at the beginning which will not be counted. In
order to obtain more insight into this matter, we test the algorithm
by shifting the starting point incrementally by 0.2 s up to 20 s and
each time measure the accuracy. Fig. 10 shows that in around 4%
of the times the error increase significantly but the overall average
error is less than 2% for these two cases. Our investigation over 15
subjects shows that the overall error in estimating the respiration
periods is less than 1.5%, i.e., we can achieve an accuracy of 98.5%.

6.2. Power reduction by sweet spot exploitation

The goal of this section is to evaluate the required power to
target a reliable communication (BER < 107%) over a single-hop
communication between nanocollectors and the nanosink when
sweet spot is exploited and compare it against the default case
when nanosensors are allowed to transmit at any arbitrary time.
Taking the typical dimensions of each lung into consideration, the
distance between nanosink and nanocollectors could vary from
less than 1 mm to around 10 cm. We show the performance of
both policies (default and sweet spots) over different distances but
our target is a single-hop communication over an average distance
equal to 5 cm. We achieve this by using a 60 s respiratory data
trace of a 12 year old subject from CapnoBase database [49]. This
trace contains 18 respiration cycles and CO, data for every 100 ms
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Fig.11. Therequired transmission power to secure reliable communication (BER <
1076) over different distances using via both default and sweet spots (20%) modes.

of the trace giving a total of 600 data points. We follow steps
explained in Section 4.2 and use Eq. (9) to compute average BER for
a given transmission power and communication distance ranging
from less than 1 mm to 10 cm. First, we start with a very low power
of 1 aW (107 '8) and calculate the average BER. While we use all
the 600 data points to calculate the average BER for the default
mode, for sweet spot exploitation, only a subset of data points that
are estimated as sweet spots are used. Then, in a while loop we
incrementally increase the power to achieve BER lower than the
target BER (107°).

First, we show the required power for both default and 20%
sweet spot over 20 different distances ranging from 1 mm to
10 cm which has been depicted in Fig. 11. As it can be seen
from the insert graph, which highlights the results for distances
less than or equal to 1 cm, the maximum required power
to reliably communicate with the sink for distances less than
1 cm is respectively 30 wW and 6 pW using default and sweet
spots. It shows that communication over only sweet spots can
drastically reduce the power requirement by more than six orders
of magnitudes over distances less than 1 cm. Although the required
power for distances less than 1 cm (6 pW) is affordable by the
nanocollectors, sweet spots over longer distances needs extremely
high power which is due to extremely high path loss in higher
distances (Eq. (3)). For example, reliable communication over our
target average distance (5 cm) needs a transmission power around
10° W which is definitely impossible for the power-restricted
nanocollectors. We can either limit the coverage of our proposed
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(a) Capnogram.

lung monitoring system to only distances less than 1 cm far from
the nanosinks or alternatively explore new mechanisms that can
further improve the power requirement.

In the next section, we introduce another technique which can
offer reliable communication in higher distances by selecting the
appropriate communication frequency regions which holds the
lowest absorption.

6.3. Further power reduction using subband

As we discussed in Section 4, absorption in the terahertz
band is sensitive to both frequency and molecular composition
of the channel. The temporal sweet spot opportunity is based on
the observation that molecular composition was variable over
time within a respiration cycle. In this section, our goal is to
conduct a frequency-dependent absorption analysis for the entire
terahertz band to identify possible existence of frequency sweet
spot, i.e., a frequency subband that provides lower absorption
coefficient than the rest of the terahertz band. Existence of such
frequency subbands will then provide further opportunities to
reduce transmission power by selecting the right subband for
communication [10].

We therefore divide the investigated terahertz band (0.1-1.8
THz) to eighty subbands equally spaced each with around 20 GHz
bandwidth (the first subband is 0.1-0.12 THz and the last one is
1.78-1.8 THz). Fig. 12 shows one respiration cycle and the cor-
responding absorption spectrogram as a heat map (best viewed in
color) where as with high absorption are shown as “hot”. We see
that the higher frequencies have significantly higher absorption al-
most all the time. The first subband, 0.1-0.12 THz, experiences the
lowest absorption among all other subbands.

Fig. 13 compares power savings using 20% sweet spot
exploitation for the entire 0.1-1.8 THz band against the case
when only the subband 0.1-0.12 THz is used for communication
at a distance equal to 5 cm. First, we see that for the default
case (no sweet spot exploitation), use of subband 0.1-0.12 THz
reduces transmission power from 10°® W to only 0.24 W which
is although a huge power saving (around 35 orders of magnitude)
but still very high for nanocollectors. Second, exploitation of sweet
spot in the 0.1-0.12 THz subband bring the transmission power
requirement for nanocollectors to only 3 pW (3 x 10~'2) which is
an affordable power for nanocollectors over a promising distance
(5 cm) for single-hop communication, advancing cell-level lung
monitoring closer to reality.
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Fig. 12. (a) Capnogram over one respiration cycle (CO, variation) and (b) corresponding absorption spectrogram. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 13. Power saving due to sweet spot exploitation and selecting appropriate
frequency subband for communication at a distance equal to 5 cm.

Our investigation shows that the communication over a
narrower subband of 100-102 GHz will further reduce the power
requirement of the default mode to around 1 nano watts which
is a reasonable power level for the nanosinks to broadcast the
periodic beacons across the lung. This narrow subband is also quite
sufficient to guarantee the required capacity for the nanosink to
transmit 10 small sized beacons per second.

Our discussion in this section has focused on choosing a sub-
band which reduces the power requirement for our proposed
WNSN. We would like to make a remark on the impact of the
sub-band on the form factor of the WNSN node. Past research
on the design of graphene-based nano-antenna has shown that
the resonance frequency of such antennas is a function of the
dimension of the antenna as well as other factors such as
chemical potential [4,63-65]. For example, the paper [4] studied
the property of a nano-patch antenna using an Armchair Graphene
Nanoribbon as the active element. In particular it studied for a
patch antenna with width of 50 nm, the length of the antenna is
a decreasing function of the resonance frequency if the transverse
electric mode is used. This means that if a resonance frequency
around 100-102 GHz is needed, the length of the antenna may be
around hundreds of micrometers [4, Figure 6b]. However, if the
transverse magnetic mode is used, the resonance frequency is a
very sensitive function of the length where a change of length of
50 nm can create a change of resonance frequency of hundreds
of Terahertz [R1, Figure 6c]. This means that the dimension of the
antenna has to be very tightly controlled and it may be difficult to
achieve a very narrow band signal. This discussion shows that in
order to achieve a resonance frequency of 100-102 GHz, we will
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need to use the transverse electric mode with one dimension in
nanoscale and the other dimension in milli or micro-scale.

6.4. The correlation of transmission window and n

The number of data points inside sweet spot is an increasing
function of the percent of the total cycle time the sweet spot
occupies, which is controlled by parameter 7. Fig. 14(a) shows how
the transmission opportunity can be controlled by » parameters.

In our previous results, we assume a transmission window
equal to 20% which is obtained by assuming 7 equal to 1.04. Now,
we analyze the transmission power requirement for a BER target
of 1078 as a function of sweet spot percentage for communication
over 0.1-0.12 THz and distance equal to 5 cm (see Fig. 14(b)). As
expected, power requirement decreases as we consider narrower
sweet spots. Note that for any transmission opportunity, the target
BER (107%) is met. Therefore, despite using smaller power with
narrower sweet spots, capacity is not affected. The exact choice
of sweet spot width should depend on the real-time nature of the
application. For lung monitoring application, storing a few sensor
data in a buffer and transmitting them during sweet spots of each
cycle should still provide useful real-time knowledge of the status
of the lung.

7. Conclusion

We have presented the concept of a WNSN for monitoring hu-
man lung cells and analyzed the transmission power requirements
for nanosensors. Our analysis has revealed that terahertz channel
quality within human lung is a periodic signal modulated by the
respiratory process. We have discovered a temporal sweet spot in
the respiration cycle that can be exploited to significantly reduce
transmission power of nanosensors. We have proposed a simple
online algorithm to estimate the periodic channel and sweet spots
exploitation demonstrated that the proposed algorithm can accu-
rately estimate the period and sweet spots of the channel, which
allows a significant power reduction. We have also shown that re-
stricting communication to the lower frequencies of the terahertz
band enables further power reduction. With these power savings,
nanosensors could upload data to a sink in a single hop of 5 cm
with only a few pico watts, advancing the concept of cell-level lung
monitoring closer to reality.
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