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Electromagnetic Resonances of Individual
Single-Walled Carbon Nanotubes With Realistic

Shapes: A Characteristic Modes Approach
Ahmed M. Hassan, Member, IEEE, Fernando Vargas-Lara, Jack F. Douglas, and Edward J. Garboczi

Abstract—In composites, carbon nanotubes (CNTs) are rarely
perfectly straight and they usually exhibit complex shapes. In
this paper, we employ the method-of-moments formulation for
arbitrary thin wires to study the electromagnetic scattering char-
acteristics of CNTs with realistic shapes. More than 800 different
CNT shapes were simulated in this work. These shapes were gener-
ated using a coarse-grained molecular dynamics model calibrated
using realistic CNT shapes encountered experimentally. The anal-
ysis shows that the shape and orientation of CNTs has a strong
effect on the scattered electromagnetic response. We used the the-
ory of characteristic modes (TCM) to explain this dependence
of the scattered electromagnetic waves on the shape of the CNT.
Using TCM, we developed simplified but highly accurate formu-
las that link the shapes of the CNTs to the resonances in their
total extinction coefficient spectrum. These formulations have the
potential to be the basis for advancing the nondestructive evalua-
tion of CNT composites using electromagnetic waves as well as the
development of novel CNT electromagnetic systems and devices.

Index Terms—Electromagnetic scattering, single-walled carbon
nanotubes (CNTs), theory of characteristic modes (TCM).

I. INTRODUCTION

C ARBON nanotube (CNT) additives in composites exhibit
a wide variety of complex shapes and are rarely perfectly

straight even when they are highly aligned [1]. Moreover, fabri-
cation capabilities have advanced enough to allow the synthesis
of CNT additives with desired shapes such as helices, rings,
and Y-shaped junctions [1]. The shape of CNTs has a pro-
found effect on the mechanical properties of the composites as
predicted by numerous simulations and measurements [2]. An
example of such studies is the work by Fisher et al. who found
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numerically that even the slightest curvature or “waviness” in
the CNT can lead to a composite with mechanical properties
that are significantly different from those of a composite with
straight CNTs [2]. Regarding the electrical properties, Li et al.
have shown that the scaling of the effective conductivity of the
composite, with the volume fraction of the additive, is differ-
ent for curved CNTs than for straight CNTs [3]. The thermal
properties of CNT composites were also found to significantly
depend on the nonstraightness of CNTs [4]. Finally, the effect
of the CNT shape on the static electric and magnetic polariz-
ability tensors has been recently quantified [5]. All this previous
work has demonstrated the importance of accounting for CNT
shape due to its influence on the mechanical, thermal, and elec-
trical properties of composites. Similarly, it is necessary to
quantify the effect of CNT shape on the composite’s electro-
magnetic scattering characteristics. This is important not only
to understand how the electromagnetic response of the material
depends on CNT structure but also because such an understand-
ing may provide the basis for rapid measurements of composite
structure, suitable for in-line manufacturing process control.

Quantifying the electromagnetic scattering characteristics of
CNTs and CNT composites has received wide interest by
several research groups [6]–[16]. The potential of straight
CNTs as nanoantennas has been quantified by the seminal
works of Hanson [7], Burke et al. [8], and Slepyan et al. [9].
Electromagnetic scattering characteristics of an infinite planar
array of straight CNTs in the lower infrared band were reported
in [10]. Sotiropoulos et al. studied the scattering characteristics
of finite arrays of straight CNTs with different spatial dis-
tributions using the MOM solution of Hallén/Pockligton-type
equations [11]. Experimental measurements and computational
modeling of the interaction of electromagnetic waves with CNT
composites were also reported in [12]–[15]. A two-dimensional
(2-D) model, which studied how the randomness in the loca-
tion of straight and parallel CNTs in a composite affects the
electromagnetic response, was presented in [16].

But to the best of our knowledge, electromagnetic scatter-
ing from CNTs having realistic shapes has not been previously
studied. More precisely, a direct relationship between CNT
shape and its electromagnetic scattering characteristics has
not been formulated. Therefore, the goal of this work is to
understand the relationship between the shape of an individual
three-dimensional (3-D) single-walled CNT (SWCNT) and the
electromagnetic waves it scatters.

In this work, we employ the method-of-moments (MOM)
formulation for arbitrary thin wires (ATW), as detailed in

U.S. Government work not protected by U.S. copyright.
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[17], to quantify the electromagnetic scattering characteris-
tics of individual SWCNTs with realistic shapes. In the MOM
formulation for ATW, the 3-D CNT is approximated as a thin
wire and current is assumed to flow only in the axial direction.
We generated hundreds of worm-like cylinders, with realistic
shapes for describing CNTs, using a coarse-grained molecular
dynamics (MD) model. The parameters of the coarse-grained
model were chosen to generate shapes of CNTs found in
commercial composite materials.

The MOM analysis of the worm-like CNTs shows that
the CNT shape has a strong effect on the resonances in
the total extinction-coefficient spectrum. These resonances are
explained using the theory of characteristic modes (TCM)
[18]–[23]. The TCM was first developed by Garbacz [18] and
advanced by Harrington et al. for both perfect electric con-
ducting (PEC) particles [19], [20] and for general dielectric
and magnetic particles [21]. The TCM is based on decom-
posing the current flowing through an antenna or a scatterer
into a set of orthogonal characteristic currents or modes, which
are typically calculated through the solution of an eigenvalue
problem [18]–[23]. The TCM has been employed to calculate
the characteristic currents and explain the scattering proper-
ties of various PEC structures such as narrow and wide metal
plates [22]. Recently, TCM has received a surge in interest
in designing antennas with optimized properties [23]–[25]. In
the TCM, the eigenvalue problem is solved at each frequency,
yielding frequency-dependent eigenvalues and eigencurrents.
Raines et al. have developed a method to track the characteristic
modes over a wide frequency range [26]. Wu et al. have stud-
ied the evolution of the eigenvalues and the eigencurrents for
small scatterers [27]. They have showed that, for small scatter-
ers, the eigencurrents stay approximately unchanged, whereas
the eigenvalues change with a cubic relationship with respect to
frequency [27]. One of the main contributions of this work is
the use of the TCM in simplifying the relationship between the
shape of a CNT and the characteristics of the electromagnetic
waves it scatters.

II. MATHEMATICAL MODEL

A. Coarse-Grained MD Model

Until recently, it has been extremely difficult to reconstruct
the (3-D) shape of CNTs in an actual composite material
[28]. Therefore, each CNT configuration considered in this
work was generated by using MD simulations of a bead-spring
model [29], [30]. In this model, each CNT is represented by
N -connected spherical particles “beads” as shown in Fig. 1(a).
A swept tube was then generated to enclose the beads, as shown
in Fig. 1(a) and (b), which generates a worm-like cylindrical
CNT similar to those previously reported [31]–[34]. Every bead
represents several carbon atoms and, therefore, the model is
coarse-grained since it does not simulate every carbon atom
in the CNT. In the MD simulations performed, the excluded
volume (EV) interaction among all the beads is given by a trun-
cated and shifted 12-6 Lennard-Jones potential (UEV) [29], [30]

UEV (r) =

{
4ε
[(

σ
r

)12 − (σr )6]+ ε, for r < 21/6σ

0, for r > 21/6σ
(1)

Fig. 1. Bead-spring model and swept tube model for the CNT. In (a), the walls
of the swept tube are made transparent to show the beads they enclose, whereas
in (b), the walls of the swept tube are made opaque to show the actual worm-like
CNT simulated.

where r is the distance between any two beads, σ and ε are
the Lennard-Jones characteristic parameters representing the
length and energy, respectively [29], [30]. The beads that form
the CNT are connected by a finitely extensible nonlinear elastic
(UFENE) potential

UFENE (r) = −1

2
kFENE

(
3

2
σ

)2

log

{
1−

[ r

1.5σ

]2}
. (2)

Here, we chose kFENE = 30ε/σ2, as the strength of the bond-
ing energy. Additionally, neighboring connected beads along
the CNT interact via an angular potential

Uang (θ) = kang (1− cos θ) (3)

where kang is the bending constant, and θ is the angle formed
by three consecutive beads that form the CNT. Equations (1)–
(3) generate CNTs whose shapes are worm-like chains similar
to the one shown in Fig. 1. The applicability of the bead-spring
model in describing CNTs geometries is based on the fact that
CNTs may be aptly described as one-dimensional (1-D) poly-
mers. This was demonstrated by Vargas-Lara and Douglas [35],
and Lee et al. [31] and [32] where the bead spring model
provided an experimentally validated model of the true geo-
metrical structure of both isolated single and multiwall CNTs.
Using the interaction potentials described in (1)–(3), we inte-
grate Newton’s equations of motion, for each bead in the CNTs,
at a fixed temperature for periods of time ≥ 106 time steps,
after which the CNTs reach their thermal equilibrium [29],
[30]. We compute the electromagnetic resonance only for CNT
shapes that have reached thermal equilibrium because, by that
time, the shape properties of the CNTs reach the desired values
regulated by the parameters in (1)–(3). Further details on the
implementation of the bead-spring model can be found in [29]
and [30].

By varying the parameter kang , CNTs with different persis-
tence lengths (P ) can be generated. The value of P is a measure
of the stiffness of the CNT [36]. That is, the higher the value of
P , the more difficult it is to bend the CNT and therefore, the
CNTs will be straighter. On the other hand, low values of P
indicate that the CNTs are more flexible and therefore the CNTs
will exhibit high curvatures and bends. Therefore, the persis-
tence length is a measure of the waviness of the CNT. Four
different kang values were considered in this work: 9, 40, 80,



HASSAN et al.: ELECTROMAGNETIC RESONANCES OF INDIVIDUAL SWCNTs WITH REALISTIC SHAPES 2745

Fig. 2. Worm-like CNTs with equal length L = 193 nm and persistence
lengths (a) P = 8.7 nm, (b) P = 83 nm, and (c) P = 153 nm.

Fig. 3. Worm-like CNTs with persistence length P = 83 nm and lengths
(a) L = 96 nm, (b) L = 193 nm, and (c) L = 624 nm.

and 120. These correspond to the following values of P : 8.7, 35,
83, and 153 nm. These values are comparable to those reported
in [31] and [32]. Fig. 2 shows three CNTs with equal contour
lengths L = 193 nm but with different values of P . Fig. 2(a)
shows the CNT with the lowest value of P and, therefore, it
is highly contorted, whereas the CNT in Fig. 2(c), with the
highest persistence length, is the straightest. The CNT shapes
shown in Figs. 1 and 2 are similar to the shapes exhibited in
commercial CNT samples [33] and in certified CNT reference
materials [34].

In all the cases studied in this work, the parameter σ was
set to be σ ≈ 0.96 nm, which yields CNTs with lengths L ≈
0.96N nm. The radius of the beads was estimated to be 0.61 nm
to resemble the radius ρ of the metallic (9, 9) armchair SWCNT.
Five different CNT contour lengths were generated in this work
by varying the number of beads N : L = 96 nm, L = 193 nm,
L = 384 nm, L = 624 nm, and L = 831 nm. These values of
contour lengths were selected to be comparable to the CNT
contour lengths exhibited in commercial samples [33] and in
certified CNT reference materials [34]. Three CNTs with con-
tour lengths L = 96 nm, L = 193 nm, and L = 624 nm are
shown in Fig. 3. All three CNTs in Fig. 3 have the same value
of P = 83 nm. For each CNT length L and value of P , 100
different shapes were generated using the coarse-grained MD
model. This large number of shapes is considered to realisti-
cally encompass the possible variations in CNT shape for each
length and persistence length. Moreover, the 100 shapes in each
set were selected from a much larger pool of 1000 shapes such
that the selected 100 shapes have the same statistical distribu-
tion of end-to-end distances as the original 1000 shapes. All
the CNTs had exactly the same radius (ρ = 0.61 nm) and the
same conductivity of the metallic (9, 9) armchair CNT, as will
be described in the following section.

B. MOM for ATW

In this work, we employ the standard MOM in the ATW for-
mulation to simulate the electromagnetic scattering from our
model CNTs [17]. All the CNTs considered are embedded in

free space and are excited by an incident plane wave propagat-
ing with wavelength λ0 and with an incident electric field Ei. In
the ATW formulation, the 3-D CNT, with radius ρ and length
L is modeled as a wire based on the assumption that current
excited by the incident Ei I will flow only in the axial direction
[17]. This assumption is valid when the length of the scatterer
and the wavelength of the incident wave are much larger than
the radius, L > 20ρ and λ0 > 20πρ [37], which is valid in CNT
applications and for electromagnetic waves with wavelengths
longer than the vacuum ultraviolet region [10], [11]. Our imple-
mentation of the MOM for ATW was validated exhaustively
by comparing with published results [17] and by comparing
with the results achieved using commercial elemctromagnetics
packages.

The axial conductivity of CNTs σcnt is finite and can be
expressed in the Drude model as [38], [39]

σcnt
∼= σ0

1 + jωτ
, σ0 =

2e2vF τ

π2�ρ
(4)

where e is the electron charge, vF is the Fermi velocity, � is
the normalized Plank’s constant, τ is the relaxation time, and
j is

√
(−1). The axial surface conductivity in (4) is only valid

in the microwave and terahertz range for metallic CNTs with
small chirality indices (n,m) < 50 [38], [39]. In this work, the
(9, 9) armchair CNT with radius ρ = 0.61 nm is employed in
all the cases considered. The values vF = 9.71× 105 m/s and
τ = 3 ps, employed in (4), are similar to values in [7]. The dis-
tributed impedance of the CNT, ZCNT , can be then expressed
as [39]

ZCNT =
1

2πρσCNT
= RCNT + jωLCNT (5a)

RCNT =
1

2πρσ0
, LCNT =

τ

2πρσ0
(5b)

where RCNT is the Ohmic distributed resistance and LCNT is
the kinetic inductance of the CNT [39].

The accuracy of the above model for the CNT conductivity
σcnt has been validated using several experiments [10], [12]–
[15]. There is evidence that the conductivity of a curved CNT
should be similar to that of a straight CNT as long as the bends
in the CNTs are not too sharp as comprehensively studied in
[40]. In [40], two different kinds of bending or curves in CNTs
were defined. In the first kind, termed localized deformation,
the bending was created by exerting a local force, e.g., through
an AFM tip. In the second kind, termed delocalized deforma-
tion, the bending force was distributed over a wider length of
the tube similar to the force distribution created when a CNT is
deformed by bending its two ends. The first kind of deformation
can lead to kinks in the CNT wall with a significant effect on
the conductivity even for nonsharp bends. In the second kind of
deformation, which is the kind relevant to this work, the distri-
bution of the bending force over a larger spatial extent leads to
a small effect on the conductivity as long as the radius of curva-
ture of the deformation is larger than a certain critical radius. If
the radius of curvature is smaller than the critical radius, created
by bending the CNT into a tighter circle, kinks start to appear
in the walls of the CNT similar to those created by localized
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deformation. The critical radius of curvature for a (5, 5) arm-
chair CNT was on the order of 1.76 nm [40]. The mean radius
of curvature of the CNTs considered in this work is equivalent
to the persistence length. The minimum persistence length con-
sidered in this work is 8.7 nm, which is larger than the critical
radius of 1.76 nm. Therefore, we anticipate no dramatic change
in conductivity at the levels of persistence lengths considered.
If variations in conductivity were to be incorporated, we antici-
pate that the effect of the shape on the electromagnetic response
of CNTs will be further magnified. Therefore, the conductivity
given by (4) will be used in all the shapes simulated.

Since the CNTs have irregular shapes and random orienta-
tions, the scattered electromagnetic waves are not uniform in all
directions for a given incident direction. Therefore, it is impor-
tant to consider all scattering directions through the use of the
extinction power Pext. The extinction power is calculated as
the sum of: 1) the power absorbed and 2) the power scattered
by the CNT in all directions. The extinction power Pext can be
expressed as [41]

Pext = 0.5Re

(∫
I∗ ·Eid


)
(6)

where the ∗ notation refers to the conjugate transpose. The
extinction power is typically normalized by the power density
of the incident plane wave to yield the total extinction cross
section Cext. The power density of the incident plane wave

can be expressed as
∣∣Ei
∣∣2/ 2η and, therefore, Cext can be

expressed as follows:

Cext =
Pext

|Ei|2
/
2η

=
0.5Re

(∫
I∗ ·Eid


)
|Ei|2

/
2η

(7)

where η =
√

µ/ε is the impedance of the medium where the
CNTs are embedded.

III. NUMERICAL RESULTS

A. Electromagnetic Scattering From CNTs With Simple Shapes

In this section, the total extinction coefficient is calculated
versus frequency for CNTs with simple shapes. In particular, we
will focus on the resonances in the total extinction coefficient
Cext, as the Cext at the resonance is greater by a factor of 100 or
more than the Cext at the frequencies between resonances. We
investigate CNTs with the following three shapes: 1) straight;
2) C-shaped; and 3) helical as shown in Fig. 4. The simplic-
ity of these shapes will provide a starting point to show how
the shape of the CNTs affects the resonances in the scattered
electromagnetic waves. Moreover, C-shaped and helical CNTs
have been fabricated before, so these shapes have importance
of their own [1]. In the three cases shown in Fig. 4, the incident
wave had exactly the same direction and polarization. Also, the
three CNT shapes have exactly the same radius ρ = 0.61 nm,
length L = 193 nm, and conductivity σCNT as given by (4).
Fig. 4 shows the extinction coefficient from these cases as a
function of frequency. Fig. 4 clearly indicates that the shape of
the CNT has a strong effect on its electromagnetic scattering
characteristics.

Fig. 4. Extinction coefficient of (a) straight, (b) C-shaped, and (b) helix-shaped
CNT. The three CNT shapes had the same excitation and length.

Typical straight wire scatterers resonate at frequencies that
occur at the following wavelengths:

λ0 =
2L

αm
, m = 1, 2, 3, . . . (8)

where λ0 is the wavelength in free space and α is the veloc-
ity factor. The value of α is very close to unity for the PEC
case [42]. For CNTs with finite length, plasmon frequencies in
the THz range were experimentally demonstrated for the first
time in [12]–[15]. The plasmon frequencies typically occur at
wavelength significantly larger than the CNT length [12]–[15].
Therefore, the velocity factor α in (8) typically varies in the
range of 0.01–0.02 for CNTs [7]. To determine the velocity
factor, consider the straight CNT whose first resonance in the
total extinction coefficient occurs around 12.3 THz, which cor-
responds to a velocity factor α = 0.016. Using this value for
the velocity factor in addition to (8), the first three resonances
should occur approximately around the following wavelengths:
λ3 = 24µm, λ3 = 12µm, and λ3 = 8µm. These wavelengths
correspond to approximately the following frequencies at the
first three resonances: f1 = 12.3 THz, f2 = 24.9THz, f3 =
37.3THz.

For the straight CNT, the extinction coefficient has a first res-
onance around 12.3 THz but no second resonance as shown in
Fig. 4. This will be justified by the TCM analysis in the follow-
ing section. The first resonance is absent in the C-shaped CNT
and it only has a second resonance around 23.7 THz as shown
in Fig. 4. The helical CNT has two resonances at different peak
amplitude than either the straight or the C-shaped CNTs but
centered at approximately the same positions: f1 = 12.2THz
and f2 = 23.2THz. These three cases show that the CNT shape
has a strong effect on electromagnetic scattering. Furthermore,
Fig. 4 suggests that the peak amplitudes of the resonances
might contain information about the shape of the CNTs. These
results are corroborated in the following section by simulating
worm-like CNTs with realistic morphologies.

B. Electromagnetic Scattering From CNTs With Realistic
Shapes

Realistic worm-like CNTs were simulated using the coarse-
grained MD model described in Section II. We will first
start with the case where the CNT length L = 193 nm, the
persistence length P = 83 nm, and the conductivity σCNT is
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Fig. 5. Total extinction coefficient versus frequency for three CNTs of different
shapes each shown as a solid thin line using different colors to separate the
different curves. The extinction coefficient of a straight CNT of the same length
and radius and for the first resonance is also shown as a thick dashed black line.

given by (4). The incident wave is propagating in the nega-
tive z-direction, polarized in the x-direction and the CNTs are
embedded in free space. A total of 100 different shapes were
considered. The CNTs are randomly oriented with no sense of
alignment.

Fig. 5 shows the extinction coefficient for 3 of the 100 CNT
shapes considered in the frequency range from 7 to 30 THz,
covering the first two resonances. Each of these three cases is
shown as a solid line, with three different line colors used to
help indicate different CNT shapes. The extinction coefficient
of a straight CNT, for the first resonance since the straight CNT
does not have a second resonance, is shown as a thick dashed
line for comparison. From Fig. 5 and from the study of all the
different 100 CNT shapes, it is clear that all the CNTs resonate
at the same frequency for the first two resonances even though
they consisted of a wide variety of shapes. Therefore, the shape
of the CNT has a minimal effect on the resonance frequency
and the resonance frequency seems to be only dependent on the
total length and the conductivity of the scatterer [43]. Fig. 5,
however, shows a wide variation in the peak amplitude of the
resonances from the CNTs. Therefore, the CNT shape must
have a strong effect on the peak amplitude of the first and
second resonance.

To quantify the effect of the persistence length on the elec-
tromagnetic scattering characteristics, we will use the same
length L = 193 nm and consider the following values for the
persistence length: P = 8.7 nm, P = 35 nm, P = 83 nm, and
P = 153 nm. One hundred different shapes for each persis-
tence length value are considered. The pristine CNT shapes
generated using the model in Section II are randomly oriented.
However, for the comparison between the different persistence
values to be useful, the CNTs need to be aligned in one direc-
tion. The alignment of the CNTs is necessary because two
CNTs with exactly the same shape can yield completely dif-
ferent total extinction coefficient values depending on their
orientation with respect to the incident wave. For example, if
the incident wave is propagating in the negative z-direction
and polarized in the x-direction, a straight CNT oriented par-
allel to the y-axis will scatter zero power at the first resonance
frequency. A straight CNT oriented parallel to the x-axis will
scatter a maximum value for the total extinction coefficient at

Fig. 6. Rotation of a CNT of length L = 384 nm and persistence length
P = 83 nm to align it with the x-axis.

the first resonance frequency. Therefore, to study only the effect
of the shape, the CNTs need to be aligned. However, it is hard
to define alignment for complex shapes like the shapes of the
CNTs considered in this work as shown in Figs. 1–3. One way
to impose an approximate alignment is to calculate the gyra-
tion tensor S for each CNT as defined in [44]. If the CNT has
a general orientation, then the nine components of the gyration
tensor can be nonzero. To achieve alignment, the CNT is rotated
until the gyration tensor is diagonal and Sxx ≥ Syy ≥ Szz . In
this orientation, if the CNT is fit within a tri-axial ellipsoid, the
major axis of this ellipsoid will be aligned in the x-direction,
which is the same direction as the incident electric field. An
illustration of this process is shown in Fig. 6.

After all the CNT shapes were aligned with the x-axis in this
manner, the total extinction coefficient was calculated. Fig. 7
shows a histogram of the peak amplitude of the first resonance
for the four different persistence length values considered. One
hundred different shapes were considered for each of the four
persistence length values, and for all the shapes, the incident
wave is propagating in the negative z-direction and the elec-
tric field is polarized parallel to the x-axis. Considerable spread
in the peak amplitude values can be seen in all four persis-
tence values considered as shown in Fig. 7(a)–(d). Therefore, it
is important to take into consideration the shape of the CNTs
when designing or testing CNT devices and composites. As
the persistence length increases, the peak amplitude of the
first resonance increases as indicated by the progression from
Fig. 7(a)–(d).

Fig. 8 shows the average of the peak amplitudes of the first
and second resonances versus the persistence length. Two dif-
ferent polarizations are considered: Ei parallel to the x-axis and
Ei parallel to the y-axis. Each data point in Fig. 8 corresponds
to the average peak amplitude of 100 different CNT shapes. The
average peak amplitude of the first resonance, when Ei is paral-
lel to the x-axis, is much larger than the average peak amplitude
of the first resonance when Ei is parallel to the y-axis. This is
anticipated since the CNTs are aligned parallel to the x-axis.
Also, when Ei is parallel to the x-axis, the average peak ampli-
tude of the first resonance increases as the persistence length
increases. Therefore, the straighter the CNT, the larger the total
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Fig. 7. Histogram of the peak amplitude of the first resonance for a CNT with
length L = 193 nm and persistence lengths: (a) P = 8.7 nm; (b) P = 35 nm;
(c) P = 83 nm; and (d) P = 153 nm.

Fig. 8. Average peak amplitude of the first and second resonance for two differ-
ent polarizations. All CNTs have the same contour length L = 193 nm. Each
data point corresponds to the average of 100 different shapes.

extinction coefficient at the first resonance frequency. The aver-
age peak amplitude of the first resonance saturates beyond the
persistence length P = 83 nm. This can be explained by the
fact that, for P > 83 nm, the CNTs are close to a perfectly
straight CNT and the average peak amplitude of the first res-
onance will converge to that of a straight CNT. The average
peak amplitude of the second resonance, when Ei is parallel to
the x−axis, decreases as the persistence length increases or as
the CNTs become straighter, whereas there is no regular trend in
the peak amplitude of the second resonance, when Ei is parallel
to the y-axis.

To quantify the effect of the actual CNT length L on
the electromagnetic scattering characteristics, Fig. 9 shows a
histogram of the peak amplitude of the first resonance for:
L = 96 nm, L = 193 nm, L = 384 nm, L = 624 nm, and L =
831 nm. One hundred different shapes were considered for
each of the five contour length values and all the shapes were
oriented parallel to the x-axis as shown in Fig. 6. All the
CNTs in Fig. 9 had the same persistence length P = 83 nm.
Considerable spread in the peak amplitude values can be seen

Fig. 9. Histogram of the peak amplitude of the first resonance for CNTs with
persistence length P = 83 nm and contour lengths: (a) L = 96 nm; (b) L =
193 nm; (c) L = 384 nm; (d) L = 624 nm; and (e) L = 831 nm.

in all four persistence values considered as shown in Fig. 9(a)–
(e). The spread in the peak amplitude increases as the contour
length of the CNT increases. For example, Fig. 9(a), which cor-
responds to the shortest CNT L = 96 nm, shows that the peak
amplitudes are spread between 372 and 25704 nm2. Fig. 9(e),
which corresponds to the longest CNT, L = 831 nm, shows that
the peak amplitudes are spread over a wider range between 238
and 88248 nm2. This can be explained by the fact that as the
CNTs get longer, they can exhibit a wider variability in their
shape, which corresponds to a larger range of possible val-
ues for the peak amplitudes of the first resonance of the total
extinction coefficient.

Fig. 10 shows the average of the peak amplitudes of the first
and second resonances, versus the CNT contour length, using
the same data in Fig. 9. Two different polarizations are consid-
ered: Ei parallel to the x-axis and Ei parallel to the y-axis. All
the CNTs in Fig. 10 are aligned parallel to the x-axis and each
data point in Fig. 10 corresponds to the average of 100 differ-
ent shapes. Similar to Fig. 8, Fig. 10 shows that the average
peak amplitude of the first resonance when Ei is parallel to the
x-axis is much larger than the average peak amplitude of the
first resonance when Ei is parallel to the y-axis for all values
of L. Also, when Ei is parallel to the x-axis, the average peak
amplitude of the first resonance increases until L = 384 nm and
then it starts declining. The average peak amplitude of the sec-
ond resonance, when Ei is parallel to the x-axis, increases as
the length of the CNT increases. On the other hand, the average
peak amplitude of the second resonance, when Ei is parallel to
the y-axis, increases as the length of the CNT increases up to
L = 384 nm and then its starts decaying.
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Fig. 10. Average peak amplitude of the first and second resonance for two dif-
ferent polarizations. All CNTs have the same persistence length P = 83 nm.
Each data point corresponds to the average of 100 different shapes.

In the following section, we will use the TCM to explain the
trends in Figs. 4–10. We will also link the CNT shape with
peak amplitudes of the resonance allowing us to predict, with-
out full-wave analysis, which shapes will generate a large or
small first/second resonance.

IV. TCM FOR CNTS ELECTROMAGNETIC SCATTERING

The TCM is based on the eigenvalue problem [20]

XJn = λnRJn (9)

where X and R are the imaginary and real parts, respectively, of
the MOM impedance matrix as defined in [17]. The vectors Jn

are the eigencurrents, also termed modes or characteristic cur-
rents, and λn are the eigenvalues. Both the eigenvalues λn and
the eigencurrents Jn are real and frequency dependent, since
the matrices X and R vary with frequency. The eigenvalue
problem (9) is solved, for each frequency, using the procedure
detailed by Harrington and Mautz [20]. The current flowing in
the CNT I can be expressed as a function of the eigenvalues and
the eigencurrents as follows:

I =
∑
n

VnJn

(1 + jλn) 〈Jn, RJn〉 (A) (10a)

Vn =

∫
Jn ·Eid
 (W) (10b)

〈Jn,RJn〉 =
∫

Jn · (RJn)d
 (W) (10c)

where Vn is called the modal excitation coefficient (MEC) and
〈Jn,RJn〉 is a normalization factor. The MEC Vn describes the
capability of the incident electric field Ei to excite the eigencur-
rent Jn. That is, if the incident electric field is oriented with
respect to the shape of the CNT, such that the eigencurrent
Jncannot be generated, then Vn = 0. If, however, the current
Jn is strongly excited by the incident electric field, then Vn will
have a large value. An important advantage of the representa-
tion in (10) is that the entire dependence on the orientation of
the CNT or the direction of the incident electric field is encap-
sulated in Vn. The eigenvalues λn and the normalization factor

〈Jn, RJn〉 are completely independent of the orientation of the
CNT or the direction of the incident electric field.

At any given frequency, not all eigencurrents will contribute
equally to the current I in (10a). The significance of each eigen-
current, termed the modal significance (MSn) factor, can be
defined as

MSn =
1

|1 + jλn| . (11)

The normalization factor 〈Jn, RJn〉 is added such that each
mode will generate unity power if excited.

Using the TCM representation, the extinction coefficient
Cext can be expressed in terms of the eigencurrents, the
eigenvalues, and the MEC as follows:

Cext =
η

|Ei|2
∑
n

(
MS2

n|Vn|2
〈Jn, RJn〉

)
(12)

where η is the impedance of the medium where the CNT is
embedded taken to be free space in this work. The various
terms in the TCM, shown in (9)–(12), have been explored
extensively for a variety of antennas [23]–[25]. However, the
contribution of this work is that they are calculated, for the first
time, for CNTs with realistic shapes and finite conductivity. All
the CNTs considered in this work are assigned a finite axial
conductivity σcnt as expressed by the Drude model in (4).

In the following sections, we will summarize the results from
the TCM analysis of CNTs. In particular, we will explore how
the main factors of the TCM decomposition, Vn, MSn, and
〈Jn, RJn〉 vary with the shape and orientation of the CNTs.

A. Modal Significance MSn

Fig. 11(a) shows the MSn for the first three modes for a
straight perfectly conducting (PEC) wire of length L = 193 nm
and radius ρ = 0.61 nm. Fig. 11(b) shows the MSn for a
straight CNT with the conductivity expressed by the Drude
model in (4). The dimensions of the PEC wire in Fig. 11(a)
and the CNT in Fig. 11(b) are identical. Also, it is important
to emphasize that the MSn is independent of the CNT orienta-
tion or the direction and polarization of the incident plane wave.
From Fig. 11(a), the first three resonance frequencies for the
PEC wire are 730, 1490, and 2260 THz. At the first resonance,
MS1 is close to unity, whereas MS2 and MS3 are much smaller.
This means that at the first resonance, the current is very close
to the current of the first eigencurrent. In the second resonance,
MS2 is close to unity, whereas MS1 is approximately 0.3627
and MS3 is negligible. This means that at the second resonance,
the current can be a mixture of the second eigencurrent and
the first eigencurrent, depending on the MEC of each eigencur-
rent, with the second eigencurrent having more weight than the
first eigencurrent. Finally, the third resonance can be a mixture
of the three eigencurrents with the third eigencurrent having a
weight of 1 and the first and second eigencurrents have an equal
weight of 0.39.

By comparing Fig. 11(b) with Fig. 11(a), it is clear that the
response of the still straight CNT is significantly different from
that of a PEC wire with the same dimensions. The first three
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Fig. 11. Modal significance factors of a straight (a) PEC wire and (b) CNT with
the same dimensions.

resonances occur at the much lower frequencies of 12, 23, and
33 THz and are much narrower. The ratio between the reso-
nance frequency of a CNT and the resonance frequency of a
PEC with the same shape and dimensions is termed the veloc-
ity factor α. In Fig. 11(b), α ≈ 0.016 which is in agreement
with the range α ≈ 0.01 to 0.02, observed in several previous
studies [7]. Therefore, CNTs resonate at a very low frequency
in comparison to their length. This fact will be used to sim-
plify the shape dependence of the total extinction coefficient
at the resonances in the following sections. This shift to lower
frequencies is due to the significant inductance term in the
impedance of the CNTs as shown in (5). This inductance slows
the wave propagating along the CNT shifting the resonances
to lower frequencies [7]. Also, the CNT resonances are signifi-
cantly narrower than those of the PEC wire. The widths of the
resonances are controlled by the Ohmic distributed resistance or
the real part of the distributed impedance of the CNTs, RCNT ,
as expressed in (5b). The peaks become broader as the value
of RCNT increases. The main goal of this work is to quantify
the effect of shape on the electromagnetic response of CNTs.
Therefore, we will defer investigating the effect of variations
in the conductivity σCNT, which will lead to variations in RCNT

and LCNT, to future work.
Similar to the PEC wire, at the first resonance, the current

MS1 is close to unity, whereas MS2 and MS3 are much smaller.
This means that at the first resonance, the current of the CNT is
very close to the current of the first eigencurrent J1. However,
the second and third resonances for the CNT differ significantly
from the PEC wires. For the CNT, at the second resonance,
MS2 is close to unity, whereas MS1 and MS3 are negligible.
Therefore, the current at the second resonance is very close to
the second eigencurrent. This is in contrast to the PEC wire
where the current at the second resonance can be a mixture of
the second and first eigencurrent. Also, at the third resonance,
MS3 is close to unity, whereas MS1 and MS2 are negligi-
ble. Therefore, for CNTs, the current at the third resonance is
mainly due to the third eigencurrent, whereas for the PEC wire,
the current at the third resonance is a mixture of the first three
eigencurrents. Therefore, the main contribution from the TCM
analysis in this section is that, for CNTs, the current at each
resonance is purely described by a single eigencurrent. The fact
that the current is not a function of a mixture of eigencurrents,
at a resonance, significantly simplifies the dependence of the
peak amplitude on the shape of the CNT as will be detailed in
the following section. Even though Fig. 11 was for a straight

CNT, our analysis of hundreds of different shapes has shown a
similar behavior.

The eigencurrents: J1 at the first resonance and J2 at the sec-
ond resonance are shown in Fig. 12(a) and (b), respectively,
for 100 different worm-like CNT shapes of contour length L =
193 nm and persistence length P = 83 nm. The same eigen-
currents are shown for 100 different worm-like CNT shapes all
having L = 624 nm and P = 83 nm in Fig. 12(c) and (d). Also,
to facilitate the comparison between the different shapes, the
eigencurrents are normalized such that they have a maximum
amplitude of unity and they are plotted versus the normalized
CNT length 
 which varies from 0 at the beginning of the wire
to 1 at its end. Fig. 12 shows that the normalized eigencurrents
can be approximated as

Jn ≈ sin (nπ
) (13)

where 0 < 
 < 1. The approximation in (13) is shown as a
thick dashed black line in each of the four parts of Fig. 12.
Similar approximations for the eigencurrents have been previ-
ously presented for uniform structures as shown, e.g., in [22].
By inspecting Fig. 12(a) and (b), it is clear that the approxi-
mation in (13) is valid for all 100 CNT shapes with contour
length L = 193 nm. Fig. 12(c) and (d) shows that a few shapes
yield characteristic currents that are considerably different from
the approximation in (13). However, the approximation in (13)
is still accurate for most of the CNT shapes of length L =
624 nm. Therefore, the contribution in Fig. 12 is to show that
the eigencurrents for CNTs with realistic conductivity and with
complex shapes yield sinusoidal eigencurrents as approximated
by (13) except for a few shapes with length L ≥ 624 nm. The
accuracy of (13) will be further demonstrated in the following
sections.

It is important to emphasize that the eigencurrents in Fig. 12
are amplitude normalized such that their maximum amplitude
is unity to facilitate the comparison between different shapes.
However, for (10) to be valid, the characteristic currents need
to be normalized with another factor 〈Jn,RJn〉, which will be
the focus of the following section.

B. Normalization Factor 〈Jn,RJn〉
To evaluate the normalization factor 〈Jn,RJn〉 for CNTs,

we need to examine the real part of the impedance matrix R
calculated using the MOM formulation. As described in [17],
the MOM impedance matrix is generated by dividing the CNTs
into N segments each of length Δ. For wires that are not
perfectly conducting, the diagonal elements of the impedance
matrix should be augmented with a term proportional to the
CNT impedance [17]. Therefore, we add ΔRCNT to the diago-
nal elements of the real part of the impedance matrix R and we
add ΔωLCNT to the diagonal elements of the imaginary part of
the impedance matrix X, where Δ is the length of each segment.
From our extensive study of the impedance matrices of differ-
ent CNT shapes, we found that the real part of the impedance
matrix R is dominated by the ΔRCNT term. Therefore, the
matrix R is mostly a diagonal matrix with the diagonal elements
more than 106 larger than any of the off-diagonal elements. A
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Fig. 12. Amplitude normalized eigencurrents or characteristic modes (a) J1 at
the first resonance and (b) J2 at the second resonance for CNTs of contour
length L = 193 nm and persistence length P = 83 nm and the normalized
eigencurrents or characteristic modes (c) J1 at the first resonance and (d) J2
at the second resonance for CNTs of contour length L = 624 nm and persis-
tence length P = 83 nm. In each subplot, the thin lines represent the exact
eigencurrents calculated using (9) and the different colors correspond to differ-
ent CNT shapes. The thick black dashed lines represent the approximation to
the eigencurrents using (13).

similar observation was also stated by Sotiropoulos et al. [11,
p. 113] in their analysis of scattering from arrays of straight
CNTs. Therefore, we can approximate the normalization factor
by assuming the relation

Rii ≈ ΔRCNT and Rij ≈ 0. (14)

Also, at the resonances, the eigencurrents Jn can be approxi-
mated by (13). Therefore, at the nth resonances, the normaliza-
tion factor 〈Jn,RJn〉 can be approximated as

〈Jn,RJn〉 =
∑

JT
n · (RJn) (15a)

〈Jn,RJn〉≈
L∫

0

sin

(
nπ


L

)
RCNT sin

(
nπ


L

)
d
 =

LRCNT

2
.

(15b)

For the L = 193 nm CNTs studied in this paper, the value
of this normalization factor (which has units of power) cor-
responds to 106.9 W and is independent of CNT shape.
Fig 13(a) shows this normalization factor for the 100 dif-
ferent CNTs shapes, with L = 193 nm and P = 83 nm, as
calculated directly from the MOM R matrix with no approx-
imation. Fig. 13(a) shows that the normalization factor varies
between (106.9±1) W justifying the approximation in (14)
and (15). Also, all the normalization factors for the different
eigencurrents at the different resonances have the same nor-
malization value as predicted from (15) and shown in Fig. 13.
This is in contrast with PEC wires where the normalization
factor depends on both the shape and the eigencurrent. To
demonstrate this dependence, Fig. 13(b) shows the normaliza-
tion factors for the same shapes in (13a) but assuming that the
CNTs are perfectly conducting. Also, the normalization factors

Fig. 13. Normalization factor for the first two eigencurrents for (a) CNTs with
the Drude model conductivity and (b) PEC CNTs.

in Fig. 13(b) are calculated at frequencies where the perfectly
conducting CNTs resonate, which are different from those in
Fig. 13(a), where the CNTs have the Drude model conductivity
(4). Fig. 13(b) clearly shows that the normalization factor for
perfectly conducting wires at resonance depends on both the
shape and the eigencurrent.

C. Modal Excitation Coefficients Vn for CNTs

In Fig. 11, the modal significance coefficients (MSn) were
plotted versus frequency. At the mth resonance, MSm is close
to unity indicating that λm is close to zero. For n �= m, the
magnitude of λn is large and therefore the contribution from
the other eigencurrents is negligible. Using this fact, the extinc-
tion coefficient at the mth resonance termed Cext (m) can be
approximated for CNTs as a function of a single mode or
eigencurrent Jm as follows:

Cext (m) =
η

|Ei|2
|Vm|2

〈Jm,RJm〉 . (16)

We will start with the MEC term Vm for simple shapes.
The first case we consider will be a straight CNT aligned
along the x-axis with a plane wave incident at an arbitrary
angle θ with the z-axis and an angle ϕ with the x-axis. The
Transverse Magnetic (TM) polarization is employed. At the
mth resonance, the free-space wavelength can be expressed as
λ0 = 2L/(mα). Therefore, the magnitude of the propagation
constant k can be expressed as k = (mπα)/L. The propaga-
tion factor at the mth resonance, the incident electric field, and
the mth eigencurrent can be expressed as

k = −mπα

L
(sin (θ) cos (ϕ) âx + sin (θ) sin (ϕ) ây

+ cos (θ) âz) (17)

Ei = âE exp(jk · r)
= [cos (θ) cos (ϕ) âx + cos (θ) sin (ϕ) ây

− sin (θ) âz] exp(jk · r) (18)

Jm = sin (mπ
) âx (19)

where r is the position vector along the length of CNT and can
be expressed for a straight CNT as: r = 
Lâxwhere 
 varies
from 0 to 1. In (19), we have used the estimate for the magni-
tude of the eigencurrent in (13) and the eigencurrent is in the
x-direction in this case because the wire is straight and oriented
in the x-direction. The first MEC, V1, can be estimated as
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V1 =

1∫
0

J1 ·Eid
 (20a)

V1 =

1∫
0

cos (θ) cos (ϕ) sin (π
) exp
(
j
πα

L
sin(θ) cos(ϕ) 
L

)
d


(20b)

|V1| =
(
2L

π

)
cos (θ) cos (ϕ) cos [(πα/2) sin (θ) cos (ϕ)]

[1− α2sin2 (θ) cos2 (ϕ)]
.

(20c)

Similarly, expressions can be derived for the magnitude of
the second and third MEC. The previous expressions were
found to match within 5% to those achieved using the exact
eigencurrents as calculated by the MOM for a straight CNT.

The advantage of the closed-form expression in (20) is that it
is general and can be applied to other straight nanowires besides
CNTs. For example, the resonances in the total extinction coef-
ficient of gold and silver nanowires have received significant
experimental interest [45]–[47]. Moreover, the variation in the
resonance with the relative angle between the incident wave and
the axis of the gold nanowire has been measured for several
resonances [45]–[47]. Equation (20) can be readily adapted to
describe this variation by selecting the velocity factor α for gold
nanowires, which tends to be larger than the values for CNTs
[45]–[47].

The velocity factor is directly dependent on the inductance
LCNT defined in (5). To account for possible variations in
LCNT , which will change the velocity factor α, Fig. 14 shows
the MEC for three velocity factors α = 1, 0.5, 0.016. Fig. 14
shows the MEC for different incident directions θ with respect
to the z-axis and at ϕ = 0 with the x-axis. The case where
α = 1 represents the case of a perfect conductor, α = 0.016 is a
typical CNT value, and α = 0.5 is an intermediate value that is
similar to the velocity factors exhibited in some gold nanowires.
Fig. 14(a) shows that |V1|2 is weakly dependent on the velocity
factor α. The factor |V1|2 is maximum at normal incidence to
the CNT and minimum when the incident wave is propagating
along the axis of the CNT for the TM polarization. Since the
other factors in (9) and (10) do not depend on the excitation or
electric field directions, this indicates that the peak amplitude of
the first resonance is maximum at normal incidence and mini-
mum when the incident wave is propagating along the axis of
the CNT.

On the other hand, Fig. 14(b) and (c) shows that |V2|2 and
|V3|2, respectively, are strongly dependent on the velocity fac-
tor. The factor |V2|2 is minimal at both θ = 0◦ and θ = 90◦

and decreases with the velocity factor α for all θ values. This
indicates that a second resonance can only be obtained at
oblique incidence for a straight CNT and only if it has a large
velocity factor α. However, typical velocity factors for a CNT
are between 0.01 and 0.02, which will cause |V2|2 to converge
to negligible values at all angles of incidence. This indicates
that there is no excitation direction that can generate a second
resonance for a perfectly straight CNT. Moreover, the results
in Fig. 4(b) help explain the trend in Fig. 8 which studied

Fig. 14. Variation in the (a) first MEC, (b) second MEC, and (c) third MEC with
the incident direction θ and value of the velocity factor α for a straight CNT.
The inset shows the straight CNT, the incident plane wave, and the electric field
directions.

worm-like CNTs of different persistence lengths. The reported
results showed that the average peak amplitude of the second
resonance decreased as the persistence length P increased for
the x-polarization. This decrease occurs because as the persis-
tence length increases the CNTs become straighter and from
Fig. 14(b) a perfectly straight CNT cannot exhibit a second
resonance for any Ei direction or CNT orientation.

An interesting observation in (17)–(20) is that when the
velocity factor is in the range suitable for CNTs, α =
0.01 to 0.02, the magnitude of the propagation constant k =
(mπα)/L is very small for the first few resonances. Therefore,
the electric field over the length of the CNT as in (10b) can be
approximated as

Ei = âE exp(jk · r) ≈ âE (1) ≈ âE (21)

where âE is the unit vector in the direction of the incident
electric field. This will significantly simplify the calculation of
the MEC and will also simplify the relationship between the
shape of the CNT and the peak amplitude of each resonance. It
will become much easier, just from the knowledge of the CNT
shape, to identify whether it will exhibit a large or a small mth
resonance.

For example, consider the following three simple shapes in
Fig. 15. In Fig. 15, the top view of the shapes is shown (i.e.,
looking down in the –z direction). In all cases, the incident
wave is propagating in the negative z-direction and the elec-
tric field is polarized in the x-direction. The direction of the
incident electric field is shown as the solid arrow. Fig. 15(a)–
(c) shows the first eigencurrent J1 at the first resonance and
Fig. 15(d)–(f) shows the second eigencurrent J2 at the second
resonance. In Fig. 15(a)–(c), the eigencurrent has only a single
maximum at the center of the wire. The direction and position
of this maximum is shown as a dashed arrow. Fig. 15(a) shows
that for a straight CNT, the current and the electric field are
in the same direction all over the length of the CNT. The dot
product between the first eigencurrent and the electric field will
then be nonzero all over the CNT causing the integral in (10b)
to have a large value. Therefore, V1 will be large and since the
peak amplitude at the first resonance is proportional to |V1|2,
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Fig. 15. Three sketches showing the first eigencurrent at the first resonance
for (a) straight CNT, (b) C-shaped CNT rotated 90◦, and (c) C-Shaped CNT
and three sketches showing the second eigencurrent at the second resonance for
(d) straight CNT, (e) C-shaped CNT rotated 90◦, and (f) C-Shaped CNT.

a large first resonance will be exhibited for the straight CNT
in Fig. 15(a). In Fig. 15(b), a C-shaped CNT rotated 90◦ is
oriented such that at the middle of the CNT, where J1 is maxi-
mum, the current is in the same direction as the incident field.
Therefore, the dot product between the incident field and J1 will
be nonzero leading to a relatively large V1 in (10b) and there-
fore a large first resonance. In Fig. 15(c), for a C-shaped CNT,
the direction of the current at the maximum is perpendicular to
the incident electric field. Therefore, the dot product in (10b)
will be small leading to a small value of V1, which indicates a
small first resonance peak amplitude.

To study the second resonance for the shapes in Fig. 15(d)–
(f), we now switch to the second eigencurrent J2. The second
eigencurrent has two maxima: one negative and one positive
as shown in Fig. 12(b). The location of the negative maximum
(red) is approximately at a quarter of the CNT length and the
positive maximum (green) is approximately at three quarters of
the CNT length as indicated in Fig. 15(d)–(f). For the straight
CNT in Fig. 15(d), the eigencurrent J2 is in the same direction
as the incident field. However, over the first half of the CNT
J2 is negative and over the other half it is positive. Therefore,
when the dot product between the incident electric field and
J2 is summed up in the integration in (10b), the positive and
negative values cancel and the result is close to zero leading
to a small V2 and a small second resonance. In Fig. 15(e),
the positive and negative maximum of J2 occur at locations
where the CNT is oriented in the y-direction. Therefore, the
maxima of J2 are perpendicular to the incident field leading
to a small dot product. Therefore, V2 is small and a small sec-
ond resonance is achieved for the 90◦ rotated C-shaped CNT
in Fig. 15(e). Finally, in Fig. 15(f), the C-shaped CNT is ori-
ented such that the two maxima of the current now point in the
same direction, which is the positive x-direction. Therefore, the
dot product between the incident electric field and J2 will be
positive over the whole length of the CNT leading to a large V2

and a large second resonance. These qualitative observations
based on Fig. 15 explain the resonances, as calculated using the
MOM exhibited in Fig. 4.

Similar observations of the second resonance were reported
for individual short silver nanowires using time-dependent den-
sity functional theory (TDDFT) calculations [48], [49]. For
straight silver wires, no second resonance was observed. As
the silver wires became more curved, the second resonance
emerged [48], [49]. This behavior of the second resonance, cal-
culated using the quantum TDDFT in [48] and [49], agrees
with our continuum TCM predictions in Fig. 15 which provides
further validity to our results. However, experimental detec-
tion of the second resonance from nonstraight CNTs is still
pending.

Most of the THz measurements on CNT samples involved
multiple interacting tubes. The interaction between the CNTs
can typically lead to additional resonances that can overlap
with the second resonance predicted by our result. Nevertheless,
the second resonance can be used to provide different theo-
retical interpretations to experimental results. For example, in
the paper of Bommeli et al., experimental measurements of the
effective conductivity of a CNT film showed a resonance in the
THz range when the electric field was parallel to the tubes [50].
When the electric field was perpendicular to the tubes, a res-
onance was also exhibited in the effective conductivity of the
CNT film, but it occurred at a slightly higher frequency than
the resonance exhibited when the field was parallel to the tubes
[50]. We hypothesize that this shift to higher frequency can be
explained by our results in Figs. 8 and 10. These figures show
that when the incident field is perpendicular to the major axis
of the tube, the first resonance vanishes and the response is
mainly due to the second resonance. Since the second resonance
always occurs at a higher frequency than the first resonance, we
hypothesize that this can be one of the factors that can explain
why the resonance in the effective conductivity of the CNT film
shifted to a higher frequency when the field was perpendicular
to the tubes as presented by Bommeli et al. [50].

Another set of interesting CNT shapes is shown in Fig. 16.
In Fig. 16(a)–(e), all the CNTs are arc-shaped with the same
radius of curvature and, therefore, they have the same persis-
tence length. Fig. 16(f) shows the peak amplitude of the first
resonance calculated from the CNT arcs in Fig. 16(a)–(e). In
Fig. 16, the incident electric field is always in the x-direction
and therefore we are only concerned with the x-component
of the first eigencurrent at the first resonance J1 to explain
the variations in the peak amplitude of the first resonance.
Fig. 16(f) shows that the peak amplitude of the first reso-
nance increases until L = 384 nm. Beyond this length, the peak
amplitude of the first resonance decreases similar to the trend
in Fig. 10 which considered worm-like CNTs with the same
contour lengths values as in Fig. 16. To explain this trend, it
is important to note that the amplitude of J1 is positive over
the length of the CNT as shown in (13) and in Fig. 12. This
means that it will be pointing from one end of the CNT to
the other end all over its length. However, depending on the
orientation of each CNT segment, the x-component of J1 can
be directed toward the positive x direction, indicated with a
green (+) symbol in Fig. 16, or toward the negative x direction,
indicated with a red (−) symbol in Fig. 16.

In Figs. 16(a)–(c), the x-component of J1 is positive over the
entire length of the CNT and the longer the CNT, the larger
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Fig. 16. Sketches showing the first eigencurrent at the first resonance for arc-shaped CNTs with contour lengths: (a) L = 96 nm; (b) 193 nm; (c) 384 nm;
(d) 624 nm; and (e) 831 nm. The corresponding peak amplitudes of the first resonance for the previously mentioned arcs are shown in (f). All the arc-shaped CNTs
have the same radius of curvature. The CNT locations where the x-component of the first eigencurrent is pointing toward the positive x-direction are indicated
with a green (+) symbol, whereas the locations where the x-component of the first eigencurrent is pointing toward the negative x direction are indicated with a
red (−) symbol. The size of the (+) and (−) symbols roughly correspond to the magnitude of the first eigencurrent.

is the MEC V1 as given in (10b). As the length of the CNT
arc increases to L = 624 nm and L = 831 nm, the curvature
in the CNT arc causes the x-component of the vector J1 to be
directed toward the negative x-direction over some segments
of the CNT. Therefore, the dot product between the incident
field and the first eigencurrent in (10b) will be positive in some
regions and negative in others, and the peak amplitude of the
first resonance starts to decrease. It is also important to note
that the normalization factor 〈Jn,RJn〉 increases monotoni-
cally with the CNT length. However, the peak amplitude of the
first resonance is proportional to the square of the magnitude of
V1 and only inversely proportional to the normalization factor
〈Jn,RJn〉 as shown in (15). Therefore, the trend of that the
peak amplitude of the first resonance follows is more sensitive
to the variations in V1.

V. SIMPLIFIED FORMULATIONS CONNECTING THE SHAPE

OF THE CNTS WITH THE PEAKS AMPLITUDE

OF THE RESONANCES

The previous sections primarily presented four approxima-
tions to simplify the rigorous TCM analysis of CNTs. In the
following section, we will demonstrate that these approxima-
tions are applicable for a wide variety of CNT shapes with
different contour and persistence lengths. The first approxima-
tion is that at the resonances, the current can be expressed only
in terms of a single mode as indicated by the modal signifi-
cance analysis in Section III-A. In the second approximation,
the characteristic current can be approximated by the sinusoidal
expression in (13). The third approximation is that the TCM
normalization factor 〈Jn,RJn〉 can be expressed as a function
of the length of the CNT and its distributed resistance and that
it is independent of the CNT shape and the mode as shown in
(15). Finally, the phase variations of the incident electric field
over the length of the CNT are neglected in the calculation

of the Modal Excitation Coefficient since the CNTs resonate
at wavelengths much larger than their contour lengths. Using
these four approximations, the relationship between the peak
amplitude of the mth resonance and the shape of the CNT can
be approximated as follows:

Cext (m) ≈ η

(LRCNT /2)

∣∣∣∣∣∣
1∫

0

sin (mπ
)
(
t̂ (
) · âE

)
d


∣∣∣∣∣∣
2

(22)

where t̂ (
) is the unit vector tangent to the wire at point 
 and
âE is the unit vector in the direction of the incident electric
field. Equation (22) assumes that the incident field has a mag-
nitude of unity. If it is different from unity, then the term

∣∣Ei
∣∣2

needs to be added to the denominator in (22).
To test the validity of the above relations, Figs. 17 and 18

compare the peak amplitude of the first resonance as calculated
by the MOM and as calculated by the approximate relation-
ship in (22) for a wide variety of shapes. All the CNTs in
Figs. 17 and 18 are aligned parallel to the x-axis, follow-
ing the methodology described in Fig. 6, and the incident
wave is propagating in the negative z-direction and the elec-
tric field is polarized in the x-direction. Fig. 17(a)–(d) shows
the peak amplitude of the first resonance for P = 8.7 nm,
P = 35 nm, P = 83 nm, and P = 153 nm, respectively. The
CNTs in Fig. 17 have the same contour length, L = 193 nm.
Fig. 18(a)–(e) shows exactly the same information as Fig. 17
but for L = 96 nm, L = 193 nm, L = 384 nm, L = 624 nm,
and L = 831 nm, respectively. All the shapes in Fig. 18 have
the same persistence length P = 83 nm. We see close agree-
ment between the full-wave peak amplitudes calculated using
the MOM in Figs. 17 and 18 and the peak amplitudes calculated
using the approximate TCM relations in (22). The advantage of
the approximate TCM relations is that they are simple geometri-
cal factors, much simpler than the MOM full-wave calculation,
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Fig. 17. Peak amplitude of the first resonance calculated using the TCM
approximation and the MOM when the incident electric field is polarized in the
x-direction for CNTs with contour length L = 193 nm and persistence lengths
(a) P = 8.7 nm, (b) P = 8.7 nm, (c) P = 83 nm, and (d) P = 153 nm.

and they only require the knowledge of the CNT shape and the
direction of the incident electric field. Therefore, the approx-
imate TCM relations help elucidate the relation between the
shape of the CNT and the peak amplitude of the resonance at
a significantly lower computational cost than full-wave electro-
magnetic simulations. The other resonances and polarizations,
not illustrated in Figs. 17 and 18 due to space limitations,
show similar agreement between the MOM and the TCM
approximation in (22).

However, for the shortest persistence length, Fig. 17(a), and
the two largest contour lengths considered, L = 624 nm in
Fig. 18(d) and L = 831 nm in Fig. 18(e), some shapes show
non-negligible differences between the peak amplitude calcu-
lated using the MOM calculation and the TCM approximation
in (22). We studied these cases thoroughly to understand which
of the four approximations used to derive (22) is responsible
for this difference. We found that for the highly twisted CNT
shapes, the eignecurrents are considerably different from the
approximation in (13) as shown in Fig. 12(c) and (d). Therefore,
the calculation of the MEC in (10b), Vn, will be relatively
different from the exact values. The normalization factors
〈Jn,RJn〉 are also function of the eigencurrents. Therefore,
the deviation of the exact eigencurrents from the expression in
(13) also causes the exact normalization factors 〈Jn,RJn〉 to
deviate from the approximation in (15).

The other two approximations used to derive (22), which
are that the current at the resonances can be expressed only in
terms of a single mode and that the phase variations of the inci-
dent electric field can be neglected as in (22), are still valid.
If longer or more twisted CNTs than those employed in this
work are considered, then the eigencurrent approximation in
(13) will start to significantly diverge from the true eigencur-
rents and the approximation in (22) needs to be amended. As
a rule of thumb, if L/P < 10, the TCM approximation in (22)
shows close agreement with the MOM values. The majority of
the shapes considered in this work satisfy this condition and,
therefore, the approximation in (22) is still valid as shown in
Figs. 17 and 18.

Fig. 18. Peak amplitude of the first resonance calculated using the TCM
approximation and the MOM when the incident electric field is polarized in
the x-direction for CNTs with persistence length P = 83 nm and contour
lengths (a) L = 96 nm, (b) L = 193 nm, (c) L = 384 nm, (d) L = 624 nm,
and (e) L = 831 nm.

Finally, the range of applicability of the approximation in
(22) depends also on the model and parameters used to describe
the conductivity of the CNT. If alternative models or parame-
ters are used, the range of validity of the approximation in (22)
might vary. This will be the focus of future work. However,
the main contribution of this work is 1) to show that the shape
of CNTs has a strong effect on their electromagnetic scat-
tering characteristics and 2) that the exact TCM in (9) and
(10) can be used to efficiently explain this shape dependence.
Some or all of the various approximations may break down, but
these two observations are expected to remain valid regardless
of the conductivity model or parameters used to describe the
conductivity of the CNTs.

VI. CONCLUSION AND FUTURE WORK

Using the MOM formulation for ATW, we have calculated
the total extinction coefficient spectrum of hundreds of differ-
ent CNT shapes with different contour and persistence lengths.
The calculations have shown that CNTs with different shapes
exhibit a wide variability in the peak amplitudes of the reso-
nances in the total extinction coefficient spectrum even if they
have the same contour and persistence lengths. Therefore, the
shape of CNTs has to be taken into consideration when design-
ing composites for electromagnetic applications. To explain
this shape dependence, we performed rigorous analysis of the
electric current distributions on CNTs using the TCM. We
developed approximate formulations that directly link the CNT
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shape with the peak amplitudes of the resonances. These for-
mulations can be used to facilitate the design of novel CNT
devices and systems. In future work, the scattering characteris-
tics of multiple CNTs will be investigated using a dual MOM
and TCM approach similar to the one evoked in this paper for
an individual CNT. Finally, we will also explore, using the for-
mulas in (22), the design of optimized CNT devices by varying
the shapes of the CNTs to meet desired requirements.
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