
 
Ultra-High Frequency Nanoelectromechanical Systems with 

Low-Noise Technologies for Single-Molecule Mass Sensing 
 
 
 
 

Thesis by 
 

Philip Xiao-Li Feng 
 
 

In Partial Fulfillment of the Requirements 
 

for the Degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 

 
 

California Institute of Technology 
Pasadena, California 

 
 

2006 
 

(Defended August 14, 2006) 
 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2006 
 

Philip Xiao-Li Feng 
 

All Rights Reserved 
 



 iii

 
 
 
 
 
 

to my wife, and our parents 
 
 



 iv

 



 v

 
 
Acknowledgements 
 
 
First and foremost I would like to express my deep gratitude to my advisor, Professor 
Michael Roukes, for his consistent support throughout the past four years.  I highly 
appreciate the abundant resources he has invested in me and my work, and the precious 
freedom and opportunities he has lent to me.  Imprinted by his dedication to research 
programs in sustaining strong support for the whole group, I am especially grateful to 
him for his inspiration, encouragement, patience and trust that helps keep my confidence 
undiminished in science and technology.  Amongst many things, Michael as a physicist 
deserves my respect for his courage and passion in pushing forward with his broad vision, 
for his firm attitude on doing only the most high-profile research with in-depth 
understandings, publishing only the very best results in an era of pervasive and increasing 
overpublication, and for his persistent pursuit of preciseness and perfection in our work.  
All these will continue to inspire and motivate me.   

Sincere appreciation is extended to my thesis committee, Professors Marc Bockrath, 
Ali Hajimiri, Changhuei Yang from Caltech, and Professor Ron Lifshitz from Tel Aviv 
University, for taking their previous time in reading and commenting my thesis.  My 
thanks go to Professors Scott Fraser, Ali Hajimiri, Axel Scherer, Yu-Chong Tai, and 
Changhuei Yang for being on my candidacy committee and offering insightful comments 
and helpful suggestions.   

  I have been very fortunate to collaborate with some of the world’s best scientists and 
engineers in some major projects of my thesis work.  My close and happy collaboration 
with Dr. Chris White from Professor Ali Hajimiri’s group has been exciting, stimulating 
and productive.  I highly appreciate Ali’s technical comments and suggestions, as well 
as his support and encouragement.  My collaboration with Rongrui He from Professor 
Peidong Yang’s group at Berkeley has been another experience of success and happiness.  
I am also grateful to Professor Chris Zorman and Professor Mehran Mehregany for 
high-quality SiC material supply and their careful comments on my drafts, and for the 
beneficial discussions with both Mehran and Chris.   



 vi

  I am very much indebted to Dr. Xue-Ming Henry Huang for training me systematically 
and working together for many midnights in the cleanroom and labs, for his having a big 
heart to share with me his own experience and lessons and to offer me valuable advices.  
I am grateful to Dr. Jack Ya-Tang Yang and Dr. Carlo Callegari for helping me in the 
instrumentation lab and for the months the three of us spent there together with long runs 
of heavy experiments almost 7 days every week, as well as those memorable sessions at 
the Red Door café.  I thank Dr. Hong X. Tang for his help with my early-days 
cleanroom obligations in maintaining and modifying the CAIBE system.  I have had the 
privilege to collaborate with Henry, Jack, Carlo, Meher Prakash, Hong, Dr. Henk Postma, 
Rassul Karabalin, Dr. Wayne Hiebert, and Selim Hanay, on various topics.   

  My special thanks go to Dr. Kamil Ekinci who has been generous in offering help even 
though he had gone on with his new career before I joined the group.  I have enjoyed 
many discussions with Meher, Inna Kozinsky, Rassul Karabalin, Henk, Dr. Warren Fon, 
Igor Bargatin, Sotiris Masmanidis, Mo Li, Hong, Dr. Dirk Orgassa, Dr. Sequoyah 
Aldridge, Dr. Matt LaHaye, Dr. Edward Myers, Ben Gudlewski, Dr. Radovan Urban, 
Wayne, Selim, Wonhee Lee, Junho Suh, Dr. Jessica Arlett, Renaud Richard, James 
Maloney, Blake Axelrod, and many other members and alumni of the group.  I thank 
Steve Stryker for his great suggestions and nice work with many components design, 
machining and repairing for our systems.  My thanks are extended to Nils Asplund and 
Dr. Guy DeRose for their help with instruments in the cleanrooms and labs.   

  I sincerely thank Ms. Exie-Marie Leagons, Ms. Linda Dosza, and Ms. Loly Ekmekjian, 
for their countless times of nice help and support.   

  I thank all my friends here for helping each other and having lots of good time together 
that have made our lives around Caltech much happier.  Particularly I thank my 
basketball friends for playing every week, which has helped keep me strong and sharp.   

  Finally, I am deeply in debt to my family and I find myself unable to completely 
express in words my gratitude and gratefulness.  During the years my wife and I have 
been studying abroad, our parents have been always tolerant and ready to help despite the 
formidably long distances from our homeland.  My now 2-year old daughter has really 
been an incredible treasure for me: a lot of breakthroughs in the projects of my thesis 
have been made when we were expecting her; her sweet smile, laughter and talking are 
my best reward that keep me optimistic and energetic.  Any single piece of my work 
would not have been done without my wife’s understanding, support, patience, and love, 
all through the vicissitudes of this journey.   



 vii

 
 
Acronyms 
 
 
AC     Alternating Current 

AFM    Atomic Force Microscope 

APCVD    Atmospheric Pressure Chemical Vapor Deposition 

BAR    Bulk Acoustic Resonator 

BioNEMS   Biofunctionalized Nanoelectromechanical Systems 

BPF    Band-Pass Filter 

CAIBE    Chemical Assisted Ion Beam Etch 

CFDRC A commercial simulation software, developed by the CFD 

Research Corporation (www.cfdrc.com), with CFD standing for 

Computational Fluid Dynamics 

CMOS    Complementary Metal-Oxide-Semiconductor 

CNT    Carbon Nanotube 

CSAC    Chip-Scale Atomic Clock 

CVD    Chemical Vapor Deposition 

DC     Direct Current 

DR     Dynamic Range 

DSHO    Damped Simple Harmonic Oscillator 

http://www.cfdrc.com/


 viii

DUT    Device Under Test 

ECR    Electron Cyclotron Resonance 

EMF    Electromotive Force 

ESI     Electro-Spray Ionization 

FDT    Fluctuation Dissipation Theorem 

FEMLAB A commercial simulation software, developed by the COMSOL Inc. 

(www.comsol.com), with FEM standing for Finite Element Method 

FET Field-Effect Transistor 

FFT     Fast Fourier Transform 

FM     Frequency Modulation 

FWHM    Full Width Half Maximum 

GPS    Global Position System 

GSM    Global System for Mobile Communications 

HF     High Frequency (3MHz – 30MHz) 

HV     High Vacuum (≤ or ~10-6Torr) 

IC     Integrated Circuits 

IF     Intermediate Frequency 

LC     Inductive-Capacitive 

LIA     Lock-In Amplifier 

LNA    Low-Noise Amplifier 

LO     Local Oscillator 

LPF     Low-Pass Filter 

http://www.comsol.com/


 ix

MEMS    Microelectromechanical Systems 

MRFM    Magnetic Resonance Force Microscope 

MS     Mass Spectrometry 

MWCNT   Multi-Walled Carbon Nanotube 

NEMS    Nanoelectromechanical Systems 

NW     Nanowire 

PLL    Phase-Locked Loop 

PMMA    Polymethyl-methacrylate 

PPB (ppb)   Part Per Billion 

PPM (ppm)   Part Per Million 

PSD    Phase Sensitive Detector 

Q     Quality Factor 

QCM    Quartz Crystal Microbalance 

QEM    Quantum Electro-Mechanics 

RC     Resistive-Capacitive 

RF     Radio Frequency 

RSBR    Resonance Signal-to-Background Ratio 

SAW    Surface Acoustic Wave 

SEM    Scanning Electron Microscope 

SET    Single-Electron Transistor 

SHO    Simple Harmonic Oscillator 

SWCNT   Single-Walled Carbon Nanotube 



 x

TCXO    Temperature Compensated Crystal Oscillator 

TCVCXO   Temperature Compensated Voltage Controlled Crystal Oscillator 

UHF    Ultra-High Frequency (300MHz – 3GHz) 

UHV    Ultra-High Vacuum (≤ or ~10-10 Torr) 

VCO    Voltage Controlled Oscillator 

VCTCXO   same as TCVCXO (above) 

VHF    Very-High Frequency (30MHz – 300MHz) 

XO     (Quartz) Crystal Oscillator 

 



 xi

 
 
Abstract 
 
 
Advancing today’s very rudimentary nanodevices toward functional nanosystems with 

considerable complexity and advanced performance imposes enormous challenges.  

This thesis presents the research on ultra-high frequency (UHF) nanoelectromechanical 

systems (NEMS) in combination with low-noise technologies that enable single-molecule 

mass sensing and offer promises for NEMS-based mass spectrometry (MS) with 

single-Dalton sensitivity.  The generic protocol for NEMS resonant mass sensing is 

based on real-time locking and tracking of the resonance frequency as it is shifted by the 

mass-loading effect.  This has been implemented in two modes: (i) creating an active 

self-sustaining oscillator based on the NEMS resonator, and (ii) a higher-precision 

external oscillator phase-locking to and tracking the NEMS resonance.   

The first UHF low-noise self-sustaining NEMS oscillator has been demonstrated by 

using a 428MHz vibrating NEMS resonator as the frequency reference.  This stable 

UHF NEMS oscillator exhibits ~0.3ppm frequency stability and ~50zg (1zg=10-21g) mass 

resolution with its excellent wideband-operation (~0.2MHz) capability.  Given its 

promising phase noise performance, the active NEMS oscillator technology also offers 

important potentials for realizing NEMS-based radio-frequency (RF) local oscillators, 

voltage-controlled oscillators (VCOs), and synchronized oscillators and arrays that could 

lead to nanomechanical signal processing and communication.  The demonstrated 

NEMS oscillator operates at much higher frequency than conventional crystal oscillators 
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and their overtones do, which opens new possibilities for the ultimate miniaturization of 

advanced crystal oscillators.   

  Low-noise phase-locked loop (PLL) techniques have been developed and engineered 

to integrate with the resonance detection circuitry for the passive UHF NEMS resonators.  

Implementations of the NEMS-PLL mode with generations of low-loss UHF NEMS 

resonators demonstrate improving performance, namely, reduced noise and enhanced 

dynamic range.  Very compelling frequency stability of ~0.02ppm and unprecedented 

mass sensitivity approaching 1zg has been achieved with a typical 500MHz device in the 

narrow-band NEMS-PLL operation.   

  Retaining high quality factors (Q’s) while scaling up frequency has become crucial for 

UHF NEMS resonators.  Extensive measurements, together with theoretical modeling, 

have been performed to investigate various energy loss mechanisms and their effects on 

UHF devices.  This leads to important insights and guidelines for device Q-engineering.   

  The first VHF/UHF silicon nanowire (NW) resonators have been demonstrated based 

on single-crystal Si NWs made by bottom-up chemical synthesis nanofabrication.  

Pristine Si NWs have well-faceted surfaces and exhibit high Q’s (Q≈13100 at 80MHz 

and Q≈5750 at 215MHz).  Given their ultra-small active mass and very high mass 

responsivity, these Si NWs also offer excellent mass sensitivity in the ~10−50zg range.   

  These UHF NEMS and electronic control technologies have demonstrated promising 

mass sensitivity for kilo-Dalton-range single-biomolecule mass sensing.  The achieved 

performance roadmap, and that extended by next generations of devices, clearly indicates 

realistic and viable paths toward the single-Dalton mass sensitivity.  With further 

elaborate engineering, prototype NEMS-MS is optimistically within reach.   
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Preface 
 
 
The preface presents a brief account of the history of the author’s research as a graduate 

student at Caltech.  While the major projects are described in much greater technical 

detail in the thesis chapters and related publications, the author hopes that this preface 

will sketch the whole context of the thesis and provide the logic sequences with which 

the topics had originally been chosen and approached.  Importantly, the thesis work has 

benefited from a lot of collaborations and they are also reviewed here accordingly.   

(i) Starting and Warming-Up Projects 

I joined Professor Michael Roukes’ group① in late Summer 2002, with great enthusiasm 

for NEMS, and also a lot of curiosities for a number of other attractive research topics in 

the Roukes group② .  Within the NEMS subgroup (at that time we had roughly 5 

subgroups, namely NEMS, BioNEMS, Spintronics, MRFM, and Phonon/Calorimetry, 

and about 30 people in total), major thrusts then included mass sensing and noise 

processes in NEMS resonators, GHz resonators and quantum measurements, nanotube 

                                                 

①A very interesting picture of the “Chez Nano” Café appeared on the website <nano.caltech.edu> then.   

②In hindsight, I was very fortunate to have obtained a free trial copy of the September 2001 issue of 
Scientific American—a special issue on Nanotech, with a collection of fine and enlightening articles written 
by some leading researchers in this field.  I was very much fascinated and I read this handy issue many 
times.  Later, this guided me to approach Dr. Roukes, author of a featured article “Plenty of Room, 
Indeed” that strongly intrigued me and stimulated me with my new research adventures at Caltech.   
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resonators, NEMS resonators with single-electron transistors (SETs), and so on.  My 

track has been mainly on engineering NEMS devices and measurements systems, 

particularly at very-high and ultra-high frequencies, for the mass sensing and phase noise 

experiments.   

  Before I came, former postdoctoral scholar Dr. Kamil Ekinci had built an ultra-high 

vacuum (UHV) system and conducted NEMS mass detection experiments with Henry 

Huang (former graduate student) and they achieved attogram-scale (1ag=10-18g) 

sensitivity in detecting evaporated gold (Au) atoms with a 32MHz NEMS resonator [1].  

After Kamil left for his faculty position at Boston University, the UHV system was 

modified by former graduate student Jack Yang and postdoctoral scholar Dr. Carlo 

Callegari to prepare for new experiments on mass sensing and the surface behavior of gas 

species on NEMS resonators.  Meanwhile, Henry had been off the UHV system and 

primarily pushing for GHz resonators by making even smaller devices, and by the time I 

joined, he had just found the 1.014GHz and 1.029GHz resonances [2], and was planning 

to do some other projects [3].   

  I started by designing circuit boards, making and testing subassemblies (including 

surface-mount components based limiter, oscillator, mixer, phase-shifter, filters, etc., and 

some control circuits) for potential use in the mass sensing experiments, while learning 

from Jack and Carlo the principles and operations of the UHV system and the large 

cryogenic apparatus (liquid He dewar, superconducting magnet, etc.), and some major 

measurement instruments involved.  Earlier they had spent a few months putting things 

together to measure gas adsorption-desorption on a 125MHz device but were not happy 

with its not so impressive quality factor (Q~1300) [4].  While the whole large 

sophisticated system exhaustingly drew Jack and Carlo’s resources and efforts, I found 

fun in wearing a gown and harboring myself in the cleanroom, where I got trained by 
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Henry who had ample and fresh experience in making many devices from 10MHz to 

beyond 1GHz.   

  I then tested my first batches of resonant NEMS devices (mostly in 150−200MHz 

range) in the UHV system with Jack’s help.  It was in this effort, after iterations of 

continuous fabrication and searching for resonances, that I learned hands-on lessons and 

developed some intuition for the many subtleties on how to get decent and very good Q’s 

for these VHF devices.   

  Having made major progress in the gas control and measurement systems, Carlo left to 

take his faculty position at Graz University of Technology in Austria in January 2003.  I 

took over and worked with Jack day in and day out on the UHV system.  Late in March 

2003, Jack and I were lucky enough to take the zeptogram sensitivity data (~7zg noise 

floor) with a 133MHz device cooled down to ~4K with He exchange-gas [4,5].  But 

then after several more runs of exchange-gas the device was killed.  In early May 2003 I 

made a 190MHz device (with Q≈5200 at ~25K) and we set off to seriously study the 

effects of surface behavior of absorbed gas on the device.  After many runs of tests and 

discussions we thought we found some interesting regime of operation and we 

communicated with Carlo.  We invited Carlo to come back and he did in mid July 2003 

and stayed for 3 weeks.  We managed to have repeatable access to the right regime and 

good conditions, which enabled us to measure the phase noise caused by surface 

adsorbates fluctuation (could be adsorption-desorption and/or adsorbates surface 

diffusion, after analyzing data and comparing to theories, and many discussions and 

debates.  It seemed by Spring 2006 the picture was getting much clearer and leading to a 

strong end of the story) [4,6].  After a lot more measurements of phase noise on this 

device at various temperatures with gas and without gas during Fall 2003, Jack asked me 

to keep this amazing 190MHz device sitting in the UHV system for potential data-taking 

while he began his thesis writing.  Later, in February 2004, Jack and I re-scrutinized the 
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system, reinstalled the nozzle, carefully calibrated gas flux and device performance, and 

finally we managed to take the real-time frequency shift step data versus pulsed mass 

loading of gas flux from the gated nozzle, with a real-time noise floor of 20zg [5].  

Besides the representative 100zg steps data shown in [5], we also had 50zg steps and 

30zg steps data with shorter gas flux pulse times.  Jack went to work with Applied 

Materials in San Jose right after defending his thesis that summer.   

  Back in Summer 2003, I collaborated with Henry and made the first suspended 

nanostructures from the bulk 6H-SiC material [7].  We demonstrated 170−175MHz 

6H-SiC NEMS resonators (with decent Q’s~3000).  We also extensively discussed the 

issues of Q’s in many such experiments and thought about interesting topics along this 

direction.  Later that summer Henry and I collaborated with postdoctoral scholar Dr. 

Henk Postma in making carbon nanotube (CNT) resonators.  Henk focused on 

demonstrating flexural CNT resonators and also planned to couple the device to a 

single-electron transistor (SET) in measurement.  Henry designed a paddle structure in 

the middle of a CNT and proposed to make torsional resonators to achieve higher Q and 

potential application for zepto-Newton force sensing [3].  I focused on device 

fabrication.  To suspend nanotubes, especially the single-walled carbon nanotubes 

(SWCNTs) with paddles, the yield was very low.  Finally I managed to suspend a 

paddle-on-SWCNT device but we were not successful in measuring resonance signals out 

of it [8].   

  Since the beginning of Fall 2003, I started to take leading roles in several projects and 

to prepare for the infrastructure for my thesis work.  With Jack and Henry’s advice and 

help, I successively refurbished and modified two small cryostat systems and prepared 

handy accessories and electronics to speed up my experiments.  In December I 

fabricated devices and performed experiments to explore the possibility of on-chip 

magnetomotive transduction of HF (~10MHz) NEMS resonators [9], with Henry’s help 
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before he defended his thesis and went to Columbia University for a postdoctoral position.  

A few months later, based on the suggestions from Michael and Dr. Hong X. Tang, I 

conducted experiments with the second generation of devices [9].  In Fall 2003, I also 

designed and made free-free beam resonators with torsional supporting beams (instead of 

lateral supporting beams), and tested them with Jack’s help.  Not very surprisingly, 

some of these explorations were not successful on their first shots due to practical 

limitations.  As technologies are being advanced, these ideas are worth revisiting with 

new generations of designs and devices. 

(ii) Concentrating on UHF NEMS and Low-Noise Technologies: 

Thesis Projects 

After several discussions with Michael also back in Summer 2003, I calculated the 

ultimate phase noise of some ~400MHz devices, and we were thinking of experiments in 

this direction.  I decided to embark on this.  It was then that I had a blueprint 

perspective of my thesis work—it should be focused on pushing for the limits of NEMS 

mass sensing and phase noise, by developing technologies with UHF (≥300MHz) devices.  

Also after that summer I began to take a major responsibility in meeting the milestones of 

our DARPA program, with the outcomes from my research projects.   

  Around the end of Fall 2003, I started to make generations of UHF devices, and to 

improve their signal electronic detection techniques.  For each device I managed to 

integrate its tuned resonance detection system into an UHF low-noise phase-locked loop.  

I systematically did their phase noise and frequency stability measurements and built a 

roadmap of UHF NEMS performance [10].  Having repeatedly observed that Q 

decreases as frequency increases and this becomes more acute for UHF devices [11], I 

performed a series of experiments and analyses to study the Q factors and dissipation 

issues in UHF devices [12].  These experiments continued till the end of Fall 2004.   
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  In parallel, late in 2003, we initiated an collaborative effort with Professor Ali 

Hajimiri’s group to develop NEMS resonator-based oscillators, on which I closely 

collaborated with former graduate student Chris White from the Hajimiri group.  At the 

beginning when we could understand the issues and examine our available technologies 

from both sides, it seemed impossible and impractical to accomplish our goal.  Luckily 

we were persistent and didn’t stop our meetings and discussions, gradually we found our 

paths.  When my UHF roadmap approached the 500MHz NEMS node, the time seemed 

to be ripe for us to experiment with our thoughts about NEMS oscillators.  After tedious 

tests, calibrations, and simulations, in November 2004 we were able to read out very 

large resonance signals from >400MHz devices.  We continued to be very lucky to 

successfully realize the continuous stable oscillations in mid December.  I then focused 

on fine tunings and the oscillator system became very stable and easy to run.  So I stuck 

with the system and kept it running every day throughout the Christmas and New Year 

recess, till January 2005, to finish making all the important measurements I could think of 

[13].  Several weeks later, I revisited the system to make some other measurements to 

explore the nonlinear behavior of the NEMS oscillator.   

  Up to this point, virtually all our high-performance VHF/UHF resonators for NEMS 

mass sensing were based on top-down nanofabricated SiC devices.  Meanwhile there 

had been a surge in studying bottom-up low-dimensional nanostructures, and of 

particularly interest were CNTs and nanowires (NWs).  CNTs and NWs have also been 

expected for NEMS, but just as with our earlier trials with CNT resonators, the yield of 

making free-standing CNT and NW mechanical structures is very low; the assembly and 

integration difficulties further compromise their promises for high-performance NEMS.  

Although we had this conservative view for bottom-up devices and believed that 

top-down NEMS would dominate (especially for engineering applications), we were 

open-minded and kept an eye on the latest advances in bottom-up techniques.   
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  So, in Spring 2005, Michael connected me with Professor Peidong Yang’s group at 

Berkeley, and encouraged me to explore the possibilities of engineering their new Si 

nanowire structures into high frequency resonators.  I communicated with graduate 

student Rongrui He from Peidong’s group and we discussed the possible issues of Si NW 

devices and the design of sample handling system and procedures.  Early in Summer 

2005, Rongrui flew down to Pasadena with bunch of samples and stayed for a week.  

After taking care of both DC and RF electrical connections issues of these Si NWs and 

couple of unsuccessful runs due to their very high DC resistance and impedance 

mismatch, we metallized some NWs and were lucky to quickly demonstrate as high as 

200MHz resonators (with quite good Q’s), which are still the highest record for 

bottom-up nanowire structures.  This was encouraging and convinced us that even these 

grown NWs could be very robust resonators.  After Rongrui headed back to Berkeley I 

went on to revisit and re-examine the initially intractable pristine (non-metallized), 

high-impedance Si NWs.  I overcame the issues and further explored their piezoresistive 

effect in detection.  I then performed extensive measurements of frequency stability and 

phase noise for all these Si NW resonators [14].  These bottom-up devices also have 

quite good frequency stability that translates into very impressive zeptogram-scale mass 

resolution.   

Table 1  Mass sensing performance of HF/VHF SiC NEMS, as of 2002. 

Resonance 
Frequency 

(MHz) 

Device Dimensions 
L(μm)×w(nm)×t(nm) 

Quality 
Factor 

Q 

Active 
Device Mass 

Meff (pg) 

Dynamic 
Range 
(dB) 

Frequency 
Stability 
σA (1sec) 

Mass 
Sensitivity 
δM (ag) 

13† 17.4×600×70 3000 13 60 1×10-7 2.6 
33† 14.2×670×260 3000 8 60 2×10-7 2.5 

125‡ 1.6×800×70 1300 1 80 4×10-7 0.75 

(†These two HF/VHF devices were made by Henry and tested by Kamil and Henry [1].  ‡This VHF 
device was made by Jack and tested by Jack, Carlo and myself while I was getting trained [4].)   

With these projects, I have obtained substantive experimental data for the bulk of my 

thesis work.  Toward the overall goals around NEMS mass sensing, all the technologies 
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developed in the above projects have shown unprecedented mass resolutions deep in the 

zeptogram regime (the best is ~3zg with typical ~500MHz devices).  To summarize, 

Table 1 and Table 2 highlight the major milestones of NEMS mass sensitivity before and 

after the work of this thesis.   

Table 2  Mass sensing performance of VHF/UHF SiC NEMS, as of 2006. 

Resonance 
Frequency 

(MHz) 

Device Dimensions 
L(μm)×w(nm)×t(nm) 

Quality 
Factor 

Q 

Active 
Device Mass 

Meff (fg) 

Dynamic 
Range 
(dB) 

Frequency 
Stability 
σA (1sec) 

Mass 
Sensitivity 
δM (zg) 

133* 2.3×150×70 5000 73 80 7×10-8 7 (@4K) 
190* 2.3×150×100 5000 96 80 7.4×10-8 20 
295 2.66×170×80 3000 118 80 4.7×10-8 15 
420 1.8× 150×100 1200 82 90 3.1×10-7 67 
411 1.7×120×80 2600 53 85 6.6×10-8 10 
428 1.65×120×80 2500 55 90 2.5×10-8 4 
482 1.6×120×80 2000 52 98 2.1×10-8 3 

(*These two VHF devices were tested in collaboration with Jack and Carlo, and completed by Feb. 
2004 [4-6], not the major results from this thesis.) 

(iii) Additional Projects and Extended Collaborations 

Besides the above thesis projects, one late piece of collaborative work worth mentioning 

is on the VHF NEMS parametric resonator and amplifier [15].  Graduate student Rassul 

Karabalin, who joined us in Summer 2004, took a lead in this effort.  Michael had the 

original idea of doing purely mechanical parametric amplification in NEMS devices for 

many years and former graduate student Darrell Harrington had first demonstrated a 

27MHz parametric resonator several years ago [16].  It was highly desired to realize 

mechanical parametric amplification with VHF/UHF NEMS in order for better 

performance.  So naturally, Rassul was directed to me to start experiments on the VHF 

parametric resonators after he spent couple of months doing theories and simulations.  

In November 2004, I designed a new process for nanofabrication of VHF parametric 

resonators that involved two layers of electron-beam writing but only one step to release 
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device plus avoiding wet etch.  This process is more convenient and suitable for VHF 

devices than the old process used for making similar but much larger structures [16].  

First shooting for ≥100MHz, we went through the new process and Rassul finished the 

fabrication training with me rather quickly.  We were delighted and pushed forward to 

measurements.  With two generations of devices we developed several schemes to see 

the parametric amplification effects in 110MHz and 140MHz devices from Spring to 

Summer 2005.  We also observed that the effect of joule heating scaled up more 

strongly in these much smaller devices, thus shadowing the parametric amplification 

effects we wanted to exploit.  Later Rassul continued to do more theoretical modeling of 

the thermal effect and scaling [15] when I was pulled to the NEMS mass spectrometry 

(NEMS-MS) project.  Meanwhile, I also collaborated with Rassul in exploring 

transduction schemes for VHF/UHF resonators based on electrostatic coupling through 

nanometer gaps [17]. 

  Briefly, the NEMS-MS project aimed to develop NEMS-based MS [18].  It was 

envisioned by Michael probably at least as early as when he asked Kamil to build up the 

UHV system for doing NEMS mass sensing.  Now with the great mass sensitivity we 

have demonstrated, it is time to push toward the Holy Grail—single-molecule mass 

sensing.  Ultimately, NEMS capability for single-molecule sensing with single-Dalton 

sensitivity will lead to weighing single molecules only by their masses and this provides a 

sheer new paradigm for MS.  To this grand goal, our first task is to do 

single-biomolecule sensing/counting with our demonstrated zeptogram sensitivity.  

Since Fall 2004, postdoctoral scholar Dr. Wayne Hiebert had been designing new parts 

for the UHV system.  In Fall 2005, the system was refurbished, with an electro-spray 

ionization (ESI) unit installed on top to generate the ionized biomolecule flux, which 

would be guided by a hexapole assembly all the way to the NEMS device.  In late Fall 

2005, the vacuum system began to work and we did tests and calibrations of the system.  

In Winter 2005, I ran a 300MHz device with a sufficiently low noise floor for catching 
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molecules, but we suffered from very low molecule flux and caption rate.  Since Wayne 

left for his new career at the National Institute of Nanotechnology in Canada early 2006, 

graduate student Selim Hanay has taken over and been working on the ion guiding to 

improve the molecule flux delivered to the NEMS detector.  Looking forward to new 

efforts on this, my major thrust is to integrate even better UHF NEMS into this system 

and to ensure the molecule-counting capability is really attained in the system.  

Currently this project is still in progress.   
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Chapter 1 
 
 
Introduction and Overview 
 
 

The work of this thesis is on the research of ultra-high frequency (UHF) 

nanoelectromechanical resonators and their technologies for ultra-sensitive 

mass sensing, towards single-molecule mass detection and mass 

spectrometry.  This chapter starts with a historical sketch of the big picture 

background and general motivations, and then zooms in to briefly introduce 

the field of nanoelectromechanical systems (NEMS) and some important 

concepts.  The chapter then discusses the pertinent context and focuses on 

our research goals, strategies, technical approaches and uniqueness.  The 

author emphasizes the roles of engineering, and advocates for engineering 

of NEMS resonators, especially those working at high frequencies, to fulfil 

their promising application potentials and to advance technologies.  In 

many aspects, this chapter provides the author’s hindsight and renewed 

views based on retrospect after several years working in this field.  The 

chapter ends with illustrating the organization of the thesis and providing 

an overview of the topics of the following chapters.   
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1.1  Background and Motivations 

The last decade has witnessed a great many scientific research achievements and progress 

at very small length scales.  Nanoscience and nanotechnology has attracted increasing 

research attention and this trend has been greatly accelerated worldwide, by the 

government endorsement of the national nanotechnology initiative (NNI) in the US and 

similar national programs in other major countries [1].  To the author’s understanding, 

nanoscience and nanotechnology have been both stimulated by the great visions and ideas 

of scientists, and driven by advances in technology and engineering.  Late Nobel 

laureate and eminent physicist Richard Feynman first systematically presented his 

far-reaching vision of miniaturization—science and engineering at very small size 

scales—in his famous talk, There is Plenty of Room at the Bottom, at Caltech in 1959, 

where he envisioned many interesting things such as shrinking the size of the computers, 

rearranging atoms, making micromachines, making precise small things with imprecise 

large tools, and so on [2].  In 1983 Feynman revisited his original talk and updated some 

of the ideas [3].  On the technology side and in practice, with the revolution of 

microelectronics and the semiconductor integrated circuit (IC) industry, great advances 

have been attained in micromachining techniques.  Miniaturization then quickly 

propagated to more fields and microelectromechanical systems (MEMS) have emerged 

since the 1980’s.  Technology innovations are ceaseless and now people can routinely 

make various nanoscale devices with advanced nanofabrication techniques. 

  Although the recent “nano-boom” and many forecasts about futuristic nanotechnology 

may sound encouraging (mostly in their superficial ways, though), they should not lead to 

unrealistic optimism and fanaticism.  As addressed in an insightful article, Plenty of 

Room, Indeed, by Michael Roukes in 2001 [4], what we can do now is still very 

rudimentary and we are still quite far from realizing Feynman’s grand vision; many 

fundamental physics and engineering challenges need to be overcome before we can 
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mass-produce nanodevices and systems.  This is still true now in 2006.  Although 

much progress has been achieved in nanoscience and nanotechnology, there is still vast 

room for more and more concrete advances and contributions to be made by many teams 

of scientists and engineers, before the vague details in the big picture become clearer.  

Within the grand vision, in exploring the physics and engineering of suspended 

nanostructures [4], the exciting and intriguing field of nanoelectromechanical systems, 

has emerged.   

1.2  Nanoelectromechanical Systems 

Nanoelectromechanical Systems (NEMS), if broadly defined, should include all 

structures and devices that satisfy (i) having both electro- (conducting) and mechanical- 

(movable) parts and having the electromechanical transduction function, and (ii) having 

one characteristic dimension in the ~1−100nm size scale (according to NNI convention 

[1]).  For example, a simple beam-structured nanoelectromechanical resonator possesses 

both electro- (resistance) and mechanical- (suspended movable beam) parts, and the 

beam’s mechanical motion can be converted into an electrical signal and be read out with 

certain transduction schemes, thus it is viewed as a NEMS device.   

  Today most NEMS are rudimentary and are based on nanostructures made by either 

top-down lithographical nanofabrication such as those in [4], or bottom-up chemical 

synthesis such as nanotubes (NTs) [5] and nanowires (NWs) [6].  They are actually 

nanoelectromechanical structures instead of systems, because they are usually individual 

nanoscale objects that people manage to characterize by using external discrete 

components and instruments, and are thus still far from real integrated systems, which are 

most desirable in realizing nanotechnology.  Nonetheless, people simply call these 

structures and devices NEMS. 
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  NEMS as an attractive field is worth thinking of from multiple viewpoints, and this 

would have interesting implications in turning NEMS into enabling technologies.  (i) 

From the physics viewpoint, the emergence of NEMS was originated from some 

mesoscopic physics studies back in the late 1980’s [4,7,8].  Even at that time, 

sub-100nm and sub-10nm structures (mesoscopic systems) were made by advanced 

nanofabrication for electronic transport measurements.  It was just natural to take further 

steps to suspend these mesoscopic systems and to excite them into motion for exploration 

of new physics and engineering.  This has turned out to be a significant and successful 

evolution.  (ii) From the engineering point of view, NEMS can be viewed as MEMS 

shrunk down to the nanoscale.  This view is helpful in NEMS engineering as one can 

always first learn from the many techniques developed for MEMS (especially in 

fabrication processes).  However, it is always critical to work out the scaling laws, and 

in some cases size really matters and what is suitable for MEMS will not work well for 

NEMS.  (iii) The microelectronics viewpoints are also helpful for engineering the 

desirable integrated NEMS.  Scaling and large scale integration of NEMS needs to learn 

many lessons from those of microelectronics governed by the Moore’s law [9,10].  An 

interesting example is that as sizes are reduced, the practical limits for both NEMS and 

microelectronics are set by parasitics [10] and their solutions should be expected to be 

analogous too.  Several helpful review introductions to NEMS with mingled physics and 

engineering viewpoints and focuses can be found in [11-14].   

1.3  Ultimate Miniaturization of Resonant Mass Sensors 

Amongst the various types of NEMS, probably the most attractive are those working in 

their resonant modes, a.k.a., nanomechanical resonators or NEMS resonators, because 

they are inherently endowed with many excellent characteristics such as surprisingly high 

operating frequency (frequency scales up as sizes shrink), ultra-small mass, ultra-low 

power consumption, etc. [12-14].  In principle these characteristics imply ultra-fast 
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(ultra-wide band), ultra-sensitive, ultra-low power devices and their large-scale 

integrations; hence they are expected to hold promise for applications ranging from 

sensing, signal processing and communication, to computation [12-14].  Here we 

confine our discussion in the context of mass sensing, while later in Chapter 3 the 

mechanical signal processing and communication context will be more relevant and will 

be addressed there.   

  Mechanical resonant mass sensors have existed for about half a century and the 

miniaturization of mechanical resonators was started in mid 1960’s, marked by the 

demonstration of resonant gate transistors [15-17].  Initially these were aimed at 

introducing high-Q but IC-compatible components for frequency selectivity with IC, but 

this actually kicked off the miniaturization of vibrating resonant mass sensors by using 

IC processes.  Some early micromachined resonant structures and arrays in SiO2 were 

reported by Kurt Petersen in 1978 [18].  In 1986 Roger Howe and Richard Muller 

reported a micromachined poly-Si beam resonator for mass (vapor pressure) sensing [19].  

In the following two decades, with the advances in MEMS technologies, many more 

researchers have developed various MEMS resonant mass sensors for different 

applications.   

  The topic has become more intriguing as nanofabrication techniques allow us to make 

much smaller mechanical resonators in deep sub-micron and even molecular scales.  

Such ultrasmall resonators can be so responsive that they can readily resolve tiny little or 

infinitesimal amounts of loaded masses which have been invisible to much larger MEMS 

and macroscopic sensors.  In principle, NEMS resonators can lead the resonant mass 

sensing to enter the sensitivity regimes from the femtogram (10-15g) to yoctogram (10-24g), 

as compared to MEMS resonators’ mass sensitivity in the picogram (10-12g) to 

femtogram (10-15g) range, and quartz crystal microbalance’s nanogram (10-9g) sensitivity.  

Hence NEMS are the most promising for mass sensing at the single-molecule level and 
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for key applications in quantitative biological science and engineering such as proteomics 

and mass spectrometry (MS).  In fact, there have been great expectations for any new 

technologies that can offer alternatives to reform and eventually replace the conventional 

expensive and complicated MS.  Therefore our strategies and technical routes consist of: 

(i) pushing for the ultimate limits of NEMS sensitivity (the ultimate sensitivity required 

for MS is 1Dalton=1.66yoctogram), (ii) real-time single-molecule (mass) counting, and 

(iii) weighing molecules and distinguishing them with single-Dalton resolution.   

1.4  Engineering NEMS for Single-Molecule Mass Sensing 

Engineering viewpoints and new engineering solutions are crucial to meeting the great 

challenges posed by the above strategic goals.  Actually, after more than a decade 

fundamental research on the governing physics and basic properties and behavior of 

NEMS resonators, it is now time to aggressively make strides in engineering NEMS for 

realistic and practical applications.   

  Here the author seriously emphasizes this and advocates for NEMS engineering, as 

there is a great need and also a capacious arena for it.  Generalized to the whole 

blueprint of nanoscience and nanotechnology, from today’s existing diverse nanodevices 

to their applications, most of the bottlenecks and unsolved problems are of engineering.  

For future NEMS of large scale integration on the chip level, more engineering 

challenges include yield, assembly, interconnection, integration, packaging and reliability, 

etc.  Some of these may be directly learned from today’s IC and MEMS industry, some 

of them may only be solved by creating new engineering paradigms.   

  Particularly for engineering NEMS toward mass sensing at the single-molecule level, 

we stress the significance of a generic protocol in which the sensing events are monitored 

in real time, rather than simply performing separate measurements with unloaded and 

loaded devices.  There are two approaches to implementing this: (i) build an active 
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self-sustaining oscillator system with the NEMS resonator; and (ii) integrate the NEMS 

resonance into a phase-locked loop (PLL) to track the resonance.  To approach the mass 

sensitivity limits with each approach, there are a number of engineering issues to be 

addressed, such as optimal device design, high-efficiency transduction, parasitic effects, 

noise, scaling laws, and so on.   

  It is the theme of this thesis to develop ultra-high frequency (UHF) resonant NEMS 

technologies incorporated with feedback control and low-noise electronics, to realize 

their system-level operation, to evaluate their performance, and to explore their potentials 

in approaching the above strategic goals.  The main results and progress are overviewed 

in the following section.   

1.5  Thesis Organization and Chapter Overview 

Following the introduction and overview in this chapter, in Chapter 2 we lay the 

foundations of VHF, UHF and Microwave nanomechanical resonators.  Both basic 

theoretical principles and experimental techniques are included, with an emphasis on 

transforming general fundamentals to the specific nanomechanical resonators operating 

in these high frequency① ranges.   

  Chapter 3 is on the development of a low-noise, stable, self-sustaining oscillator with 

a low-loss UHF vibrating NEMS resonator as its frequency-determining element.  The 

self-sustaining oscillator is important because it demonstrates the feasibility of building 

active oscillators with passive nanomechanical vibrating resonators, and thus converting 

                                                 

①Throughout the text, “high frequency” is used in its literal meaning which can be taken as an inclusive but 
less formal designation of a loosely-defined wide range possibly covering several frequency bands in the 
radio frequency spectrum; while the high frequency band (3-30MHz) itself is referred as its technical term 
acronym, HF. 
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direct current (DC) power into radio-frequency (RF)② power utilizing NEMS resonators.  

The NEMS oscillator operates in the UHF band, which is much higher than attained by 

the state-of-the art MEMS oscillators based on vibrating MEMS resonators.  This 

technology readily demonstrates mass sensitivity in the zeptogram-scale, as well as its 

unique advantages.   

  In parallel to the self-sustaining oscillator operation, we present the development of the 

technologies of embedding UHF NEMS resonators into low-noise phase-locked loop 

(PLL) systems in Chapter 4.  In this approach, a more stable frequency source is often 

used to work as a voltage-controlled oscillator (VCO) to drive a NEMS resonator and to 

lock to and track the resonance.  This NEMS-PLL system-level operation represents 

another generic approach of real-time NEMS resonance locking and tracking.  This 

technology has shown NEMS mass sensitivity that is sufficient for single-biomolecule 

sensing.   

  An important issue that has arisen in engineering NEMS is the trade-off between 

scaling devices (both sizes and operating frequency) and attaining high quality factors 

(low loss or dissipation).  The dissipation issues have become especially keen for UHF 

NEMS resonators.  Chapter 5 is dedicated to carefully exploring the dissipation 

mechanisms and limiting factors on the device quality factor.  Important and dominant 

energy loss mechanisms have been identified and guidelines and possible solutions for 

quality factor engineering are discussed.   

                                                 

②Radio-frequency (RF) is the interesting portion of the electromagnetic spectrum in which electromagnetic 
waves can be generated by alternating current (AC) signals fed to an antenna.  Broadly-defined RF usually 
covers from kHz to GHz ranges.  The term RF used in the thesis complies with this convention but also 
has an emphasis on the ranges from HF band to 1GHz (beyond 1GHz we often use the term microwave), 
and implications on communications.   
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  Besides pursuing the ultimate performance of the best top-down UHF NEMS 

resonators, we have been keeping an open eye to the possibilities of devices made by 

bottom-up chemical synthesis techniques.  Chapter 6 presents our latest efforts with 

high-performance resonators based on Si nanowires (NWs).  We demonstrate that these 

Si NWs are robust resonators that can operate in the VHF/UHF ranges.  The Si NW 

resonators have been realized with both metallized and pristine (non-metallized) 

high-impedance NWs.  Their wonderful piezoresistive effect offers very promising 

piezoresistive detection.  With comprehensive characterizations of the basic 

specifications, frequency stability and dissipation issues, we show that the Si NWs have 

excellent performance comparable to that of the state-of-the-art top-down devices.   

  Finally in Chapter 7, the research effort toward the engineering of UHF NEMS 

resonators for ultimate sensitivity and low-noise applications is summarized, with major 

conclusions drawn and future interesting short-term and long-term research topics 

suggested and envisioned.   
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Chapter 2 
 
 
Foundations of VHF, UHF and Microwave 
NEMS Resonators 
 
 

This chapter presents the pertinent knowledge base for NEMS resonators 

and lays both theoretical and experimental foundations for the projects 

presented in the upcoming chapters.  Throughout the discussions of 

fundamentals that may still hold in wider ranges, we emphasize our 

particular interest in their applicability for beam-structured VHF, UHF and 

microwave NEMS resonators.  After introducing some key concepts and 

basic characteristics of NEMS resonators, we discuss a lumped-parameter 

model, the damped simple harmonic model for a beam-structured resonator.  

With this model we analyze the fundamental noise process of the resonators 

and gain an insight into some fundamental performance limits for real 

experiments.  We then focus on the basic methods and techniques in 

experiments of NEMS resonators.  Single-crystal silicon carbide (SiC) is 

introduced as the material of choice for our NEMS VHF/UHF/microwave 

resonators, followed by descriptions of SiC epilayer preparation and SiC 

NEMS nanofabrication.  We introduce transduction, i.e., excitation and 

detection schemes of NEMS resonators.  We discuss several available 

electrical detection and readout schemes for the SiC NEMS resonators.   
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2.1  Theoretical Foundation 

2.1.1  Beam Resonators and Their Basic Characteristics 

2.1.1.1  Beam Resonator Vibration and Dynamic Response 

 

Fig. 2.1  Schematics of beam resonator and dynamic vibration.  (a) Schematic of a suspended beam 
resonator structure with characteristic dimensions.  (b) Schematic of flexural mode beam vibration. 

One of the most interesting NEMS resonators is based on a beam structure as simple as 

shown in Fig. 2.1(a), with beam length L, width w, and thickness t.  The beam can be 

driven to in-plane (displacement in y direction) and out-of-plane (displacement in z 

direction) flexural vibrations.  Fig. 2.1(b) displays the flexural beam displacement (u=y 

for in-plane and u=z for out-of-plane).  The flexural beam dynamics is readily described 

by the Euler-Bernoulli theory [1], 
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2

2

2

2

=⎟⎟
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∂
∂
∂

+
∂

∂
x

txuEI
xt

txuAρ ,        (2-1) 
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where A=wt is the beam cross area, EI is the flexural rigidity with E the Young’s (elastic) 

modulus and I the moment of inertia (Iy=w3t/12 for in-plane vibration, and Iz=wt3/12 for 

out-of-plane vibration).  The general solution of eq. (2-1) (by separation of variables) is 

given by 

( ) ( ) ( )[ ] tj
nnnnnnn

nexxbxxatxu ωλλλλ ⋅−+−= sinhsincoshcos, ,  (2-2) 

where λn are eigenvalues of flexural mode shapes and ωn are eigenfrequencies of 

vibrations.  The mode shape eigenvalues λn are determined by the beam boundary 

conditions, among which the most representative and of our interest are: 

(i) Doubly-Clamped: 
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(ii) Free-Free:  
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(iii) Cantilever:  
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where ‘clamped’ means both displacement and deflection angle (slope of the deflection 

curvature) are zero; ‘free’ means no bending moment and no shear force.  Both (i) 

doubly-clamped beam and (ii) free-free beam cases yield the same fundamental mode 

eigenvalue with λnL=4.730 and thus same eigenfrequency: 
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( )
A
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ω 22
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0
4.22730.4

== ,         (2-4) 

and hence we have 

ρπ
ω E

L
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0
0 03.1

2
==  (in-plane),         (2-5a) 

ρπ
ω E

L
tf 2

0
0 03.1

2
==  (out-of-plane).        (2-5b) 

The (iii) cantilever beam case yields the fundamental mode eigenvalue with λnL=1.857, 

and its corresponding frequency is 

( )
A

EI
LA

EI
L ρρ

ω 22

2

0
52.3875.1

== ,         (2-6) 

and therefore 

ρπ
ω E

L
wf 2

0
0 161.0

2
==  (in-plane),        (2-7a) 

ρπ
ω E

L
tf 2

0
0 161.0

2
==  (out-of-plane).       (2-7b) 

  The above results clearly show that for beam-structured NEMS resonators to pursue 

high frequency applications, doubly-clamped and free-free beams are preferred.  More 

detailed analyses and solutions for higher-order harmonic modes can be found in [1-3]. 

2.1.1.2  Energy Dissipation and Quality Factor 

The quality factor (Q) of a resonant system is defined as the energy stored in the system 

divided by the energy dissipated, 
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E
EQ

Δ
≡ π2 ,              (2-8) 

where E is the total stored energy and ΔE is the energy loss per cycle (i.e., ΔE/(2π) the 

energy loss per radian).  If driving power P=ω⋅ΔE/(2π) is put into the resonance to 

compensate the energy loss per cycle and to sustain constantly steady-state oscillation, 

then we have 

P
E

E
EQ ωπ =

Δ
≡ 2 .            (2-9) 

Note here the power pumped into the resonator, 

Q
EEP ω

π
ω =

Δ
=

2
,            (2-10) 

is exactly the resonator’s power dissipation or consumption. 

  In experiments, the resonator Q can be measured in two ways.  In frequency-domain 

measurement, Q can be determined by identifying the full-width at half maximum 

(FWHM) of the Lorentzian-shaped power signal (note not the amplitude signal) of the 

resonance, 

FWHM
fQ 0= .             (2-11) 

In practice, this is usually performed by fitting the power signal resonance curve to the 

Lorentzian (or equivalently by fitting the amplitude signal to the square-root of the 

Lorentzian).  In time-domain, the measurement is usually implemented within a 

“ring-down” process.  When the excitation is turned off, the resonator vibration 

amplitude should follow an exponential decay, 

⎟
⎠
⎞

⎜
⎝
⎛−=

τ
tAtA exp)( 0  ,           (2-12) 
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where A(t) is the amplitude at a function of time, and τ is the ring-down time 

constant—the time required to the amplitude to decrease by a factor of e.  The quality 

factor Q is related to the ring-down time constant τ by 

τπτω
0

0

2
fQ == .             (2-13) 

2.1.1.3  Beam Resonator in the Damped Simple Harmonic Oscillator Model 

 

Fig. 2.2  Beam resonator in the damped simple harmonic oscillator (DSHO) model.  The distributed 
deflection along the beam length is ignored and the beam vibration is represented by 1D oscillation of 
a mass-string system. 

From the point of view of systems with lumped parameters, we can describe the beam 

resonator vibration by a damped simple harmonic oscillator①  (DSHO) model.  As 

delineated in Fig. 2.2, the model damped system consists of a massless string with a 

dynamic stiffness (or simply taken as spring constant) keff, and an effective active mass 

Meff.  This way the distributed transverse deflection of the beam is conveniently lumped 

into the one-dimensional motion of the effective mass Meff, with its displacement 

overlapping with that of the beam’s midpoint in the fundamental flexural mode.  

Mathematically, this model actually predigests the partial differential equation (e.g., eq. 

                                                 

①For convenience, the term “oscillator” here simply complies with the conventional use in physics and 
mechanics textbooks—in the mechanical domain, usually the device (or system) is called an oscillator as 
long as it oscillates, such as “simple harmonic oscillator”, “Duffing oscillator”, without distinguishing the 
device being passive or active.  Sometimes clarification is needed, especially in the electrical domain.  
We make the distinction: a resonator is passive, and an oscillator is self-sustaining and active.  Hence 
more strictly here both the device and model are to be termed with resonator. 
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(2-1)) of the Euler-Bernoulli theory into an ordinary differential equation and thus greatly 

simplifies a lot of important analyses that follow.  The governing equation of this DSHO 

model is 

( )tFxk
dt
dx

dt
xdM effeffeff =++ γ2

2

,         (2-14) 

where the damping coefficient is QM effeff 0ωγ =  (so long as Q≥10), and F(t) is the 

driving force.  If the driving is harmonic it is more interesting to examine the dynamic 

response in the frequency domain.  In the vicinity of the fundamental resonance, the 

driven DSHO model describes the flexural motion of a beam resonator with accuracy 

 ≤1% for Q≥10.  The frequency-dependent amplitude response a(ω) upon applying the 

driving force F(ω) is 

( ) ( )
( ) QMjMk effeffeff ωωω

ωω
0

2 +−
=

Fa ,        (2-15) 

in which we note that both F(ω) and a(ω) contain not only magnitude but also phase 

information.  They are phasors, i.e., complex variables as functions of frequencies.  At 

each specific frequency ω, the time-domain instantaneous displacement is 

x(t)=|a(ω)|cos(ωt+ϕ) for harmonic driving force F(t)=|F(ω)|cos(ωt), with ϕ the phase 

difference between the drive and response.  We can then define the dynamic transfer 

function, or the dynamic responsivity ℜa(ω) of the “force displacement” transduction 

for the resonator beam, 

( ) ( )
( ) ( ) QMjMk effeffeff

a ωωωω
ωω

0
2

1
+−

=≡ℜ
F
a .     (2-16) 

Clearly the responsivity ℜa(ω) is also a phasor; and it is very meaningful that the ℜa(ω) 

is the dynamic compliance of the resonator, and the response described by eq. (2-16) can 
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be viewed as an extension of the well-known Hooke’s law F=kx from statics to resonance 

mode.   

  Now we turn to map the beam resonator within the context of the DSHO model.  Let 

the amplitude of the lumped point mass Meff simulate that of the beam resonator’s 

midpoint.  For uniform load upon the beam (applied force per unit length is constant and 

has uniform distribution over beam length), we first solve for the midpoint amplitude 

versus force based on beam deflection theory by following Timoshenko [1]; in the 

meantime, in the DSHO model let the same total force apply upon the effective mass and 

yield the same amplitude; also note that keff=Meffω0
2 with ω0 determined by 

Euler-Bernoulli theory as in eqs. (2-4) and (2-6); hence we arrive at the following 

relations for a doubly-clamped beam resonator (out-of-plane): 
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Likewise, we have the following for a cantilever beam resonator (out-of-plane): 
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Note that M is the real physical mass of the beam; and w and t should be exchanged in the 

keff equations in both cases if switching from out-of-plane to in-plane vibration.   

2.1.2  Noise Processes 

Noise is becoming increasingly important for systems with shrinking dimensions.  For 

beam-resonator-based NEMS, it is plausible to suppose that the noise issue may be more 

severe because intuitively smaller systems are more susceptible to noise.  Ultimately 
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noise processes set the lower-end limits for the sensitivity, stability, and reliability of 

NEMS resonators in their various applications.  There can be many sources imposing 

noise upon a NEMS resonator in a practical scenario, but from a system viewpoint 

virtually all the noise sources can be categorized into either (i) intrinsic noise directly 

from the resonator device itself, or (ii) extrinsic noise introduced by measurement 

electronics.  In fact, what we call intrinsic noise from the device itself, more accurately 

and strictly, refers to the noise arising from the interactions between the device and its 

environment.  Some of the interactions are spontaneous and occur when the device is in 

equilibrium with its pristine environment (e.g., thermal bath).  Some other 

device-environment interactions are associated with non-equilibrium physical or 

chemical processes (e.g., adsorption-desorption, mass loading), which are often made 

possible within deliberately designed or controlled environments.  What we call 

extrinsic electronic noise only but always shows up in our observations as long as the 

device is under test within a system involving realistic instruments. 

  Due to their random and statistical nature, and to various physics origins, it is always 

difficult to quantitatively model noise processes, especially for a realistic system 

involving both intrinsic and extrinsic noise.  For beam resonators, the above 

lumped-parameter, damped SHO model greatly facilitates the otherwise more intractable 

noise analyses.  Nonetheless, here we primarily focus on the most important intrinsic 

noise that is inevitable for every NEMS resonator and thus affects the ultimately 

achievable performance of the device. 

2.1.2.1  Thermomechanical Noise 

At finite temperature, a resonator device is at least inevitably engaged in interactions with 

its surroundings, such as a thermal bath, which is in thermodynamic equilibrium with the 

resonator.  Even in thermodynamic equilibrium at constant temperature, stochastic force 

from random agitation in the thermal bath is driving the resonator into mechanical motion 
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and at the same time the motion is damped by the same stochastic force②.  We call this 

the thermomechanical motion (or thermomechanical fluctuation) of the resonator device.  

Sharing the same underlying physics with the well-known Brownian motion [4,5], this 

motion can be mathematically described by the Langevin equation [5].  Equivalently, 

and more generally, the phenomenon is dictated by the fluctuation-dissipation theorem 

(FDT) which is accounted in more detail in [5].  The thermomechanical motion of a 

NEMS resonator and its resulting noise impose fundamental limits upon the device 

response transduction, and ultimately upon achievable performance in applications. 

  For a NEMS beam resonator in its damped 1D SHO representation, equipartition 

theorem [5] demands that 

22
0

2

2
1

2
1

2
1

thefftheffB xMxkTk ω== ,        (2-19) 

where kB is the Boltzmann constant (kB=1.38065×10-23J/K) and T is absolute temperature 

of the resonator and thermal bath in equilibrium.  Note that xth is the thermomechanical 

displacement of the effective mass, 〈xth
2〉 is the mean-square displacement with 〈 〉 

denoting ensemble average (as it is usually used in statistical physics), and thus the 

root-mean-square quantity is 〈xth
2〉1/2. 

  In frequency-domain description, the stochastic force has a white spectrum.  In other 

words, the thermomechanical force spectral density is white, 

( )
Q

TMk
S effB

F
04 ω

ω = ,  in [N2/Hz];        (2-20) 

                                                 

②On the nature of the stochastic force: in brief it is the effect of a continuous series of stochastic 
atomic/molecular collisions and interactions with the thermal bath, which can be through solid materials 
and structures (such as mechanical resonator devices and their supports, etc.) and not necessarily in fluids 
as was in the case of the original Brownian motion observations. 
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and thus the RMS force density is 

( )
Q

TMk
S effB

F
0

2
1 4 ω

ω = ,  in [N/√Hz].         (2-21) 

With the responsivity given in eq. (2-16), the spectral density of the resonator’s 

thermomechanical motion displacement is 
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Here note in general the spectral density is measured in the scale of power per Hertz or 

modulus square per Hertz, which determines its unit for each specific quantity. 

  As eq. (2-22) displays, the device has its thermomechanical resonance driven by the 

thermomechanical noise force.  At the peak of the thermomechanical resonance the 

RMS displacement is 

3
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1 4

ωeff

B
x M

TQkS = ,  in [m/√Hz].          (2-23) 

Eqs. (2-21) and (2-23) represent the resonator’s intrinsic force noise floor and 

displacement noise floor, respectively, set by the resonator’s thermomechanical 

fluctuations.  Forces and displacements below these levels cannot be resolved if the 

resonator is employed as a force sensor and/or a displacement detector. 

2.1.2.2  Phase Noise and Frequency Noise 

Besides the displacement and force noise in resonators, frequency and phase noise are of 

the most importance, and are particularly crucial for resonant sensors and 

resonance-based signal generation and processing.  A comprehensive introduction to the 

key concepts and methods of frequency and phase noise in signal sources is given by 
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Robins in [6].  Here our treatment continues to aim at the intrinsic fundamental limits of 

frequency and phase noise in NEMS resonators, still following the SHO model context. 

(i)  Phase Noise 

 

Fig. 2.3  Definition of phase noise per unit bandwidth. 

In the frequency domain spectrum signal from a resonator as illustrated in Fig. 2.3, phase 

noise is a measure of spectral purity and it is defined as the power of noise sideband per 

unit bandwidth in the units of decibels below the carrier (dBc/Hz), 

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡ Δ+
=Δ
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csideband

P
HzPS 1,log10 ωωωφ   in [dBc/Hz],    (2-24) 

in which Psideband(ωc+Δω, 1Hz) is the single-side noise power at an offset frequency Δω 

from the carrier, in a measurement bandwidth of 1Hz, and Pcarrier is the total power under 

the power spectrum.  For a NEMS beam resonator operating at fundamental mode, 

carrier frequency is simply the resonance frequency, ωc=ω0.  The phase noise induced 

by the thermomechanical fluctuation is 
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where Sx(ω0+Δω) [m2/Hz] is the mean-square displacement per Hertz at Δω offset 

frequency and 〈xC
2〉 is the mean-square displacement at the maximum allowable drive 

level.  For harmonic vibration, 〈xC
2〉=aC

2/2 with aC being the maximum possible 

amplitude in linear regime.  Let EC=Meffω0
2aC

2/2; this defines the maximum energy 

level of the resonator, and hence applying eq. (2-22) we have 
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where the approximation holds for ω0/Q<<Δω<<ω0, and PC=ω0EC/Q is the maximum 

drive power level.  This clearly shows that thermomechanical-fluctuation-caused phase 

noise has 1/f 2 dependency in the phase noise spectrum.  Here we use f as the offset 

frequency for convenience in the power-law description of the noise spectrum, or in fact 

we have (ω0/Δω)2=(f0/f)2 in eq. (2-26). 

(ii)  Frequency Noise 

The phase noise can also be viewed and measured as frequency noise, because phase is 

the time-integral of frequency (a.k.a., the famous ‘φ=ωt’).  Besides the carrier phase 

term φc(t)=ωct, let the instantaneous excess phase term be φ(t)=φ0sin(Δωt) assuming a 

sinusoidal modulation at offset frequency Δω; thus instantaneous frequency varies as 

δω(t)=dφ/dt=Δωφ0cos(Δωt).  Hence if we define the fractional frequency variation 

y=δω(t)/ω0 [7,8], we have 
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Therefore the noise spectrum of the fractional frequency variation is 
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Note here that in calculating the Sy(Δω) we use the absolute unit for Sφ(Δω) [1/Hz] 

instead of the decibel unit [dBc/Hz].  This result indicates that the thermomechanical- 

fluctuation-induced fractional frequency variation noise Sy(Δω) is white.  The spectrum 

of the absolute frequency noise is also flat and we have 
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  Beyond the consideration of thermomechanical limited phase noise, some of the above 

analyses hold for more general cases.  At least we can arrive at the following relations: 
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=Δ ΔSSS y 22

2
0 1 ) .       (2-30) 

Here to avoid confusion we note: (i) ω=ω(t) is the time-dependent instantaneous 

frequency of the resonator; (ii) ω0 is the resonance frequency and also the carrier 

frequency (ωc=ω0); (iii) Δω is the offset frequency from the carrier, i.e., it is the 

time-independent Fourier frequency that appears in any spectral density (sometimes for 

convenience in speaking of the power laws of the spectral density we use f as Δω). 

  The relations in eq. (2-30) clarify that the power law of the phase noise spectrum is 2 

orders lower than that of the frequency noise.  We illustrate this in Fig. 2.4.  For 

instance, flat (white) and 1/f frequency noise spectra translate into phase noise spectra 

with 1/f 2 and 1/f 3 power laws, respectively. 
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Fig. 2.4  Illustration of power-laws of the spectra of (a) frequency noise and (b) phase noise, and (c) 
dependency of Allan deviation on the averaging time.  (Here A and B are offset constants; and for 
the axes labels, only the decades and differences are meaningful.) 

(iii)  Time-Domain Characterization of Phase Noise: Frequency Stability 

In the time domain, phase noise is more suitably described as frequency stability (or 

equivalently, frequency instability).  There is a very important quantity for this 

measure—the Allan deviation [7-9]—which is widely used in the resonator, frequency 

control, communication and timekeeping instruments, and other communities.  

Sometimes the square of Allan deviation—Allan variance, is also used.  Allan deviation 

is the deviation of variations between every two adjacent measured average fractional 

frequencies, as a function of the averaging time interval.  This definition can be readily 

used to characterize the frequency stability of the NEMS beam resonator with nominal 

resonance frequency ω0=2πf0: 
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Here if  is the measured average frequency in the ith time interval.  By examining the 

Allan deviation with various averaging time intervals, it is possible to attain 

comprehensive understanding of the frequency stability performance within the ranges of 

interest. 

  The conversion relation between the phase noise spectral density and Allan deviation is 
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  Now consider the frequency stability limit set by thermomechanical fluctuations, with 

eqs. (2-26) and (2-32) we determine the Allan deviation to have a σA(τ)~τ-1/2 dependency: 
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  Likewise, we obtain σA(τ)~τ1/2 for 1/f 2 drifting frequency noise spectrum (which has 

phase noise following 1/f 4), and σA(τ) independent of τ (~τ0) for 1/f frequency noise 

(with its phase noise spectrum following 1/f 3).  We have illustrated this in Fig. 2.4 

together with the noise spectral density power laws. 

  Often both the frequency-domain and time-domain measures of phase noise (or 

frequency noise) are used.  For practical reasons, phase noise spectra are usually used to 

characterize short-term (very small τ and very large Δω) frequency instability, and Allan 

deviation is more often employed when it becomes more and more difficult to directly 

measure the very-close-to-carrier (very smaller Δω) phase noise. 
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2.1.2.3  Extended Discussion on Noise Processes 

We should point out that noise from various origins is not new and unique for NEMS 

resonators but is ubiquitous for all mechanical resonator devices.  It is only the fact that 

its effects are more frequently ‘rediscovered’ and problems revisited when new 

technologies are being developed.  There exist studies on noise processes in mechanical 

resonators and sensors based on both conventional quartz crystals and recent MEMS 

resonators [10-14].  An introductory study on the noise processes in NEMS resonators 

can be found in [15].  Investigations focused on specific noise processes such as 

adsorption-desorption noise have been performed for both MEMS devices [12-14] and 

NEMS resonators [15,16].  Although the physical origins of the noise processes remain 

the same despite the resonators’ size-scaling, the most important for studying noise in 

NEMS resonators is to gain quantitative understanding and to determine the ultimate 

limits and dominant noise sources.  Despite these efforts, today our understanding of 

various noise processes in NEMS is still far from enough, especially at the system 

level—for in most cases we can only deal with the simplest models, which can be too 

unrealistic for practical systems (e.g., systems involving multiple devices, and those 

undergoing complicated physical/chemical processes).  Albeit it may sound eternal, 

engineering noise will remain a key, and a lot more needs to be done to understand and 

then control or take advantage of noise processes, before we can embrace the best 

capabilities the devices intrinsically allow for. 

2.1.3  Nonlinearity and Dynamic Range 

The signal ceiling or onset of nonlinearity of a NEMS resonator is also of great 

importance, in parallel to the aforementioned noise floor analyses.  Smaller devices 

unavoidably lead to lower energy storage and power handling.  Thus this creates a 

challenge in achieving excellent phase noise performance, as manifested in eqs. (2-26) 

and (2-33).  For a vibrating NEMS beam resonator, an intrinsic limit is set by the 
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maximum usable vibration amplitude beyond which a bifurcation point can be reached, 

where bistable states exist and the device response undergoes hysteresis [17].  In physics 

and mechanics, the onset of nonlinearity is often taken ideally right at the bifurcation 

point.  In engineering practice it is usually defined as the 1dB compression point (to be 

in consistency with the general definition of the signal ceiling for electronic components 

in measurement systems), which often yields more conservative estimations than by 

bifurcation.  We extend the DSHO model by adding nonlinear terms into eq. (2-14), 

( ) ( )tFxkxkxk
dt
dx

dt
xdM effeffeff =+++++ L2

212

2

1γ ,     (2-34) 

where ( ) ( )L+++≡ 2
211 xkxkkxk eff  is the nonlinear stiffness.  For convenience we 

keep the conventions such as linear stiffness keff=Meffω0
2 and definitions of Q in the weak 

nonlinear regime. 

  For a doubly-clamped beam resonator, the nonlinear effect is primarily from 

longitudinal tension in the beam when the beam is driven to large amplitudes.  In this 

case, the nonlinear stiffness is ( ) ( )2
21 xkkxk eff +=  and we obtain the Duffing equation 

with damping: 

( )tFxkxk
dt
dx

dt
xdM effeffeff =+++ 3

32

2

γ ,       (2-35) 

with the cubic nonlinear coefficient k3=keffk2.  The bifurcation point (critical amplitude) 

can then be solved [17,18], 

EQ
LaC

ρ
π

ω 3
2

2

0= .            (2-36) 
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In the analysis by Postma et al. in [18], it is found that the maximum usable amplitude is 

0.745aC, according to the 1dB compression point convention.  Combining this 

amplitude signal ceiling and the displacement noise floor set by thermomechanical 

fluctuation as in eq. (2-23), we have the intrinsic device dynamic range, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ
=

fS
aDR

x

C

2
745.0log20]dB[ ,          (2-37) 

with Δf being the measurement bandwidth.  This is the maximum possible dynamic 

range and the practically achievable dynamic range is often smaller than this, due to noise 

floor mismatch and operation lower than the maximum usable amplitude. 

  For cantilever beams, however, there are various mechanisms of nonlinear effects and 

it is not clear which is dominant [19].  For a given cantilever resonator, modeling all 

nonlinear effects and predicting the onset of nonlinearity still appear very difficult.  For 

most NEMS cantilevers, we expect that geometric and material nonlinearities, and effects 

due to boundary conditions, may have important contributions. 

2.1.4  Basics and Metrics of NEMS Mass Sensing 

The above treatment of the basic properties and noise and dynamic range of NEMS 

resonators has significant implications for the emerging applications of NEMS mass 

sensing.  As mentioned in Chapter 1, although resonant mass sensors have existed for 

over 50 years and their miniaturization has been one major thrust in the MEMS 

community during the past two decades, new insights into this ‘old’ paradigm have been 

gained in revisiting it with the new NEMS technologies, based on several key concepts 

and metrics.  In NEMS mass sensing, mass is detected as the frequency shift due to the 

mass-loading effect upon a resonator.  We care about the lower limit—the smallest mass 

δM the device can detect—which we define as the mass sensitivity (or mass resolution).  

Mass resolution is determined by the smallest resonance frequency shift we can resolve, 
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i.e., the frequency resolution δω0 (as δM<<Meff always holds when considering the lower 

limit), 

ℜ
=

∂
∂

= 0
0

0

δωδω
ω

δ effM
M .           (2-38) 

Here we call ℜ the mass responsivity (in [Hz/g]).  It is the responsivity of the ‘mass 

change frequency shift’ transduction in the mass-loading effect, 

effeff MM 2
00 ωω

−=
∂
∂

≡ℜ .           (2-39) 

  Following our above analyses in the DSHO model, by integrating the 

thermomechanical- fluctuation-induced frequency noise in the available measurement 

bandwidth, we can determine the thermomechanical noise limited frequency resolution 

(method is detailed in [20] by Ekinci et al.), 

Q
f

E
Tk

C

B Δωδω 0
0 ≈ .            (2-40) 

This indicates that both noise floor and signal ceiling come into play, thus leading to the 

mass resolution depending on available dynamic range, 

( 20

0

102 DR
eff Q

fMM −⋅
Δ

≈
ω

δ ) .          (2-41) 

This result provides very important insights into guidelines for device engineering.  

Beyond the essence presented here, extended analyses of mass sensing limits set by other 

noise processes can be found in [20].  These limits superpose and the thermomechanical 

noise is the most important intrinsic mechanism in many cases of interest. 
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  We have seen that the smallest mass a NEMS resonator can sense is a combination of 

how responsive the device is (how large ℜ is) and how small a frequency fluctuation can 

be measured.  In pushing the fundamental limits of resonant mass sensing to 

single-Dalton resolution, the NEMS resonators are the most promising candidates, 

because they combine these two attributes the best—retaining the highest mass 

responsivity while improving frequency noise performance by scaling up the resonator 

frequency. 

  In practical measurements, especially when the extrinsic noise dominates, from eqs. 

(2-38) and (2-39) we have 

( 002 )ωδωδ effMM −= ,           (2-42) 

where the practical noise floor of (δω0/ω0) is not intrinsically limited by 

thermomechanical noise and thus yielding mass resolution not as good as predicted by eq. 

(2-41).  The practical mass resolution achieved in a measurement would be 

( ) ( )τσωδωτδ
τ Aeffeff MMM 222 00 == .       (2-43) 

Here 〈δω0/ω0〉τ denotes the achieved fractional frequency resolution—the RMS fractional 

frequency fluctuation as a function of averaging time in the measurement—which is 

directly related to the measured Allan deviation.  Therefore eq. (2-43) dictates that the 

realistic lower limit of mass resolution should be approached by engineering smaller 

devices with higher frequency stability. 
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2.2  Experimental Foundation 

2.2.1  Silicon Carbide (SiC) Material for RF NEMS 

We use SiC as the structural material for our NEMS resonators.  In fact, SiC has been an 

excellent microelectronic and MEMS material for high-profile (expensive) applications 

in stringent conditions and environments [21,22].  SiC has many polytypes [21,22] and 

single-crystal 3C-SiC is used in this thesis work.  Table 2-1 collects some important SiC 

material properties, in comparison with those of Si, GaAs, and diamond.  Conventional 

Si is still the dominant MEMS material and GaAs has also been used in MEMS for its 

piezoelectricity, but SiC is more attractive for RF NEMS thanks to its high elastic 

modulus-to-density ratio (E/ρ).  This was also experimentally verified in [23], where 

given the same resonator dimensions, SiC could yield much higher resonance frequency 

than Si and GaAs could.  Compared to diamond, SiC has the advantages of easy single 

crystal growth and relatively more mature SiC electronics.  The first GHz 

doubly-clamped beam resonator and many more in UHF ranges have been made with SiC 

[24,25], confirming that SiC is perfectly suitable for VHF/UHF/microwave NEMS.   

Doubly-Clamped Beam, In-Plane 
f0=400MHz

Free-Free Beam, In-Plane
f0=700MHz

(a) (b)

 

Fig. 2.5  Examples of FEMLAB simulation and design of UHF NEMS resonators based on SiC 
beams.  Eigenfrequency analysis, and simulations of the mode shape and deflection, in color maps, 
of (a) the fundamental in-plane flexural mode of a 400MHz doubly-clamped beam; and (b) an 
in-plane free-free beam with its fundamental mode resonance frequency at 700MHz.   
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(a) (b)  

Fig. 2.6  Examples of CFDRC simulations.  A 500MHz in-plane free-free beam with snapshots of 
its time-domain displacement, also in color maps.  (a) X-displacement and (b) Y-displacement.   

  For the design of UHF devices, we use doubly-clamped and free-free beams rather 

than cantilevers.  Before and in iterations with device fabrication processes, we employ 

finite element simulation tools including FEMLAB and CFDRC in the design.  With 

given dimensions and reliable parameters such as material properties, we usually use 

FEMLAB to perform eigenfrequency analyses to predict the resonance frequencies of the 

NEMS devices with reasonably good accuracy.  Such examples are illustrated in Fig. 

2.5.  We also use CFDRC to compute the transient response and time-domain vibrations 

of NEMS devices, as illustrated in Fig. 2.6. with examples.   

Table 2-1  Selected material properties of SiC, in comparison with Si, GaAs, and Diamond. 

                     Material 
  Property

3C-SiC 6H-SiC Diamond Si GaAs

Mass Density [kg/m ]3 2850 2850 3520 2330 5320
Young’s Modulus [GPa] 430 430 1035 180 460
Thermal Conductivity [W/(cm⋅K)] 5.0 4.9 20 1.5 0.5
Thermal Expansion Coeff. [×10 /K]-6 3.8 4.2 1.1 2.6 6.9
Max. Operating Temp. [ C]o 873 1240 460 300 1100 

Melting Point [ C]o Sublimes 
at 1825

Sublimes 
at 1825 1238 1415

Phase 
Change 
at 1400

Band Gap [eV] 2.2 2.9 5.45 1.12 1.42
Dielectric Constant 9.7 9.7 5.7 11.9 13.2
Physical Stability Excellent Excellent Fair Good Fair
Doping Hard Moderate Hard Easy Easy
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Fig. 2.7  Measured surface roughness of the SiC wafer used in this work. 

  Briefly, the 3C-SiC films used in this work are heteroepitaxially grown on 100mm 

(4in.) diameter (100) Si wafers in an RF-induction-heated, atmospheric pressure chemical 

vapor deposition reactor [26,27].  SiH4 and C3H8 are used as precursors, and H2 is used 

as a carrier gas.  The epitaxial process is a two-step, high-temperature (1280°C) 

procedure, involving the carbonization of the Si surface in a C3H8/H2 ambient followed 

by epitaxial growth using SiH4, C3H8 and H2.  Originally the epitaxial growth recipe was 

optimized for micron-thick films.  Recent efforts have also made it suitable for 

producing ~50−250nm thick films with sufficient surface quality for e-beam lithography 

and subsequent nanomachining.  The defects density in these thinner films has also been 

minimized.   

  Previous study [25] shows the SiC wafer surface roughness can greatly affect the 

performance of devices.  Recently progress has been made in controlling the surface 

roughness in 3C-SiC growth [27].  Fig. 2.7 shows measured surface roughness from one 

of such wafers we have been using in this work.  The measured RMS roughness is only 

~1.15nm over a 5μm×5μm region and multiple measurements throughout the same wafer 

surface yield RMS roughness values all in the range of 1−2nm.   
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2.2.2  Nanofabrication of NEMS Resonators 

ECR Plasma Etch
(Anisotropic)

ECR Plasma Etch
(Isotropic)

Photo- & E-Beam Lith.SiC on Si

(a) (b)

(d) (c)

ECR Plasma Etch
(Anisotropic)

ECR Plasma Etch
(Isotropic)

ECR Plasma Etch
(Isotropic)

Photo- & E-Beam Lith.Photo- & E-Beam Lith.SiC on SiSiC on Si

(a) (b)

(d) (c)

 

Fig. 2.8  Surface nanomachining process flow for nanofabrication of SiC NEMS resonators. 

For the SiC epi-layer on Si substrate wafers, we use a surface nanomachining process to 

make NEMS resonators.  A simplified process flow is shown in Fig. 2.8.  The 

complete fabrication involves a combination of optical and electron-beam lithography 

techniques.  The process begins by using standard photoresist and optical lithography to 

define the large-area contact pads comprising a 2−4nm thick Cr adhesion layer and an 

80nm thick Au film.  The substrates are then coated with a bi-layer 

polymethyl-methacrylate (PMMA) thin film, which is then patterned by electron-beam 

lithography into a metallic lift-off mold to define the sub-micron mechanical structures of 

the SiC devices.  The pattern on the metal mask (typically ~30nm Al, followed by ~5nm 

Ti) is transferred to the 3C-SiC structural layer by using a NF3/Ar anisotropic etch with 

an electron cyclotron resonance (ECR) plasma etching system.  The newly patterned 

3C-SiC beams are then suspended by simply etching the underlying Si substrate using an 
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isotropic NF3/Ar ECR etch (same gas but at lower bias voltage).  The metallic etch mask 

remains on the SiC beams to be used as the active conducting layer for subsequent DC 

electrical or RF electromechanical measurements.  The low-mass density of Al 

metallization helps in reducing mass loading, thus resulting in a higher frequency for the 

same device geometry as compared with a denser metal (such as commonly used Au).  

The thin Ti top layer can help prevent oxidation of Al.  We have carefully experimented 

with the metallization layers and our tailoring now routinely yields devices with DC 

resistance in the range of ~70−150Ω (for different device lengths).  This is very 

important for RF measurements because the device’s impedance becomes well-matched 

to 50Ω when it is at low temperatures.   

L=15μm, t=80nm, w=120nm
(out-of-plane) f0~10MHz, Q~50,000
L=15μm, t=80nm, w=120nm
(out-of-plane) f0~10MHz, Q~50,000

(a)

L=2.3μm, t=100nm, w=150nm
(out-of-plane) f0=190MHz, Q~5000
(in-plane) f0=296MHz, Q~3000

(b)

 

Fig. 2.9  SEM images of typical suspended 3C-SiC NEMS beam resonators.  (a) A large 
aspect-ratio beam with 10MHz fundamental frequency.  (b) A much shorter beam that can operate in 
VHF/UHF ranges. 

  Fig. 2.9(a) shows a typical long-beam device having a large aspect ratio (~125), with 

its fundamental frequency at about 10MHz.  Fig. 2.9(b) shows a much shorter beam that 

can operate in the VHF & UHF ranges with either out-of-plane or in-plane flexural 

modes.  In the development of generations of such devices with operating frequencies 

scaling from HF to UHF ranges, we have also engineered the device release (dry etch) 

process that eventually defines the 3D structure of the device.  We carefully control the 

undercut in the dry etch so that its effects on the clamping losses are minimized.   
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2.2.3  Transduction of VHF/UHF/Microwave NEMS Resonance 

Although several resonance transduction (both excitation and detection) schemes have 

been demonstrated or proposed for NEMS resonators, thus far they only work up to HF 

or at most VHF range.  For MEMS resonators, electrostatic transduction has been the 

most successful and it prevails from kHz all the way up to GHz.  However, it suffers 

from large motional resistance and parasitic coupling when it is scaled down to NEMS 

resonators and the scaling solutions are not clear yet.  As a result, the magnetomotive 

transduction [28,29] with which the first NEMS resonators were demonstrated in MHz 

and GHz ranges, still remains the most efficient for VHF/UHF/microwave resonators 

[23-25].   

  As sketched in Fig. 2.10, the metallization layers on top of the surface of the resonator 

body are employed to drive the resonator and to detect its resonant motion.  The driving 

RF current i passes through the device within a properly arranged magnetic field (e.g., as 

shown in Fig. 2.10), and generates an RF Lorentz force F, which actuates the resonator, 

and excites the mechanical resonance when the driving frequency hits the resonance 

frequency.  The mechanical resonance in turn generates an electromotive voltage v, 

which is electronically detected and thus the resonant mechanical motion is measured 

accordingly.   
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Fig. 2.10  Schematic of magnetomotive transduction of NEMS beam resonator. 



 40

  In magnetomotive transduction, the equivalent circuit model of the electromechanical 

resonance is a parallel LRC tank given by 
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Here B is the magnetic field and η is the mode shape constant.  The derivation of this 

model is detailed in [28].   
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Fig. 2.11  Equivalent circuit model of the magnetomotively-transduced NEMS resonator.  (a) 
Circuit model consisting of series DC resistance and parallel LRC tank.  (b) An example of the 
electromechanical resonance predicted by the circuit model. 

  Consider the DC resistance of the device, the complete equivalent circuit model is 

shown in Fig. 2.11(a).  As an example, Fig. 2.11(b) shows the electromechanical 

impedance of a typical UHF NEMS resonator as dictated by the circuit model.   

  With the typical NEMS fabrication technology we have (e.g., t=100nm, w=150nm), 

using the above circuit model, we have estimated the circuit model parameters versus the 
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designed resonance frequency, in the frequency range we are interested in.  The results 

are presented in Fig. 2.12.  Clearly seen is that the electromechanical impedance 

decreases very much as the device size is reduced and the frequency is scaled up. 

0 2 4 6 8 10 12 14 16

107

108

109

1010

R
es

on
an

ce
 F

re
qu

en
cy

,  
f 0 (

H
z)

Resonator Beam Length,  L (μm)
(a)

  
0 1 2 3 4

0

20

40

60

80

100

5

 Q=4,000
 Q=5,000
 Q=10,000

M
ot

io
na

l R
es

is
ta

nc
e,

  R
m
 (Ω

)

Resonator Beam Length,  L (μm)
(b)

 

0 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

M
ot

io
na

l C
ap

ac
ita

nc
e,

  C
m
 (n

F)

Resonator Beam Length,  L (μm)(c)
  

0 2 4 6 8 10 12 14 16
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

M
ot

io
na

l I
nd

uc
ta

nc
e,

  L
m
 (n

H
)

Resonator Beam Length,  L (μm)(d)  

Fig. 2.12  Scaling of resonance frequency and circuit model parameters of the NEMS resonators. 

2.2.4  Resonance Detection and Electronic Readout 

Two-port network analysis is probably the most canonical and also convenient approach 

to perform RF detection and measurements of a NEMS resonance.  Fig. 2.13 

demonstrates the most important three schemes of two-port network analyses for NEMS 

resonators.  All these schemes have hitherto been implemented in real measurements.  
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The efficiency of each is limited by interplay between the resonance’s electromechanical 

impedance and the response due to the impedance mismatch and parasitic effects.   

  The transmission scheme in Fig. 2.13(a) has been directly used for HF and up to 

~200MHz resonators with close to 50Ω impedance, and used with shunt 50Ω resistance 

to decrease the impedance mismatch for devices having large DC resistances (from 

>100Ω to well in the kΩ range) such as nanowires [30].  The reflection scheme shown 

in Fig. 2.13(b) has been more often applied to HF/VHF resonators [23,28,29], mostly by 

employing a directional coupler in lieu of the circulator shown.   

 

Fig. 2.13  Electronic readout schemes and measurements diagrams.  (a) Two-port transmission 
measurement scheme with single device.  (b) Two-port reflection measurement with single device.  
(c) Two-port balanced-bridge measurement with a pair of devices. 

  Both the transmission and reflection schemes quickly lose their efficiency when the 

device frequency approaches the UHF range and the device electromechanical impedance 
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becomes even smaller, as compared to the effect of any commonly existing parasitics.  

As shown in Fig. 2.13(c), a prototype of the balanced-bridge scheme [31] was developed 

to evade this issue to some extent.  This scheme involves a pair of devices with very 

close DC resistances, and has been proven to have better efficiency than both the 

transmission and reflection schemes in detecting UHF NEMS resonances.  However, 

this scheme and its underlying theory only take care of the effects of the DC resistance 

mismatch and its better efficiency has only been manifested with VHF devices.  It still 

suffers from only obtaining very small resonance signals when implemented in the UHF 

range.  Later we made improvements, or the second generation of the bridge scheme 

[25], but this progress was unsubstantial and did not completely solve the problem.  Our 

latest but significant improvements for large signal readout from a typical UHF NEMS 

resonance was catalyzed and squeezed out in our desperate development of the NEMS 

oscillator technology.  The analyses and implementation of this third generation bridge 

scheme is presented in Chapter 3.   
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Chapter 3 
 
Ultra-High Frequency Low-Noise 
Self-Sustaining Oscillator Based upon 
Vibrating Nanomechanical Resonator 
 
 

This chapter describes the demonstration of a stable, low-noise, 

self-sustaining active oscillator operating at ultra-high frequency (UHF), 

based upon a 428MHz vibrating nanomechanical device.  The low-loss 

nanomechanical resonator fabricated from high-quality single-crystal silicon 

carbide is excited into flexural vibrating modes and the resonance is detected 

in parasitics-immunized large signal utilizing high-resolution readout 

circuitry engineered for UHF NEMS resonators.  Stable self-sustaining 

oscillation is realized using the UHF nanomechanical resonator as the 

frequency-selective element embedded in a low-noise feedback control loop.  

This nanomechanical-resonator-based active oscillator exhibits excellent 

frequency stability and mass sensitivity for mass sensing applications.  This 

initial, unoptimized NEMS oscillator already exhibits fairly good phase 

noise performance for RF applications.  The active self-oscillating mode of 

vibrating nanodevices also provides a generic self-sensing and detecting 

technology for measurement methodologies and instrumentations in 

fundamental physics and biology.   
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3.1  Introduction to Self-Sustaining Oscillators 

Self-sustaining oscillators possess the unique property of spontaneously generating 

periodically occurring events and sustaining these oscillations by extracting energy from 

non-periodic sources.  They exist in nature in many areas ranging from biological 

circadian rhythms [1] to fluids flows [2] and dynamic systems [3].  They also find 

important applications in human-enabled (engineered) systems such as navigation and 

communication [4], sensors and transducers [5], and clocks and timekeeping [6], where 

the technological progress has mainly been driven to attain ultra-fast (wide bandwidth) 

operation, high-precision, low-power and ultra-high integration densities. 

 

Fig. 3.1  Illustration of a self-sustaining oscillator system.  (a) Schematic of a typical RF 
self-sustaining oscillator which consists of a frequency-determining element and a sustaining amplifier 
as its key components.  (b) Illustration of the RF output (both time-domain waveform and 
frequency-domain spectrum) of a self-sustaining oscillator. 

  Stable and low-noise RF electrical oscillators are probably the most important 

self-oscillatory units for these applications, especially for modern communications and 

instrumentations with their increasing requirements on performance.  Fig. 3.1(a) shows 

the conceptual construction of such an RF oscillator, which consists of a 

frequency-determining (selecting) element, a sustaining amplifier, and amplitude and 

phase control in the feedback path.  The oscillator converts DC power into RF power, 
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with its RF output illustrated in Fig. 3.1(b).  An excellent oscillator should continuously 

output coherent waveforms and ideally the frequency-domain power spectrum should 

only have a singular frequency component, while in reality it always has noise sidebands.   

3.2  Crystal Oscillators: from Quartz to Vibrating NEMS 

In most conventional electrical oscillators, the frequency selectivity is determined by tank 

circuits of passive components, such as the classical Wien-bridge (RC) oscillator which 

launched Hewlett-Packard in 1940 [7], and modern LC oscillators [8].  Quartz crystals 

were used in oscillators as stable RF sources for radio broadcasting, by radio amateurs, in 

the 1920’s.  For its desirable properties (e.g., very-high-Q’s of 104−105 or even 106, and 

highly stable resonance frequencies), quartz technology grew rapidly during the World 

War II and has since played major roles working as frequency sources and time bases in 

the aforementioned applications [9,10].  However, these off-chip quartz units have 

continued to resist shrinkage in the relentless miniaturization of microelectronics, thus 

prohibiting the development of microchip-based integrated systems such as wireless 

on-chip transceivers.  Moreover, miniaturized IC-compatible devices can work in 

remarkably higher frequency ranges beyond those of conventional quartz oscillators (up 

to ~20-30MHz with fundamental modes and ~200MHz with higher overtones). 

  Early ideas of integrating micromachined mechanical resonators for tuned circuits 

were discussed and demonstrated in mid 1960’s [11].  Later, effort towards 

micromechanical signal processing with MEMS resonators was pioneered by Clark T.C. 

Nguyen in the early 1990’s [12].  Nguyen first made a monolithic CMOS oscillator with 

a 16.5kHz poly-Si comb-driven MEMS resonator [13], initiated and dedicated to the 

development of vibrating MEMS resonator based oscillators and filters for RF 

communication applications [14].  MEMS reference oscillators have been demonstrated 

with flexural mode doubly-clamped beams resonators at about 10MHz [15,16].  

Recently better performance has been achieved by a MEMS oscillator based on a 60MHz 
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wine-glass mode disk resonator [17] which is a representative of the state-of-the-art 

MEMS reference oscillators.  The improved phase noise performance is quite promising 

for some applications, although still inferior to that of quartz.  At higher frequencies, 

although several kinds of VHF/UHF/GHz MEMS resonators have been realized lately 

[18], the scaling of motional resistances in the series-tank circuit models of these 

capacitively-transduced resonators is presently hindering them from being readily turned 

into low-noise reference oscillators. 

  We take proactive steps further down to nanoscale, and consider nanomechanical 

signal processing.  Operating at higher frequencies than their MEMS counterparts in 

VHF/UHF/GHz ranges, the recently-highlighted NEMS devices made of both 

lithographically-patterned nanobeam structures [19,20] and chemically-synthesized 

nanowires [21,22] and nanotubes [23], however, are all passive resonators.  It is also 

desirable to implement active oscillators with these devices but this remains an open 

challenge. 

  Major technical difficulties common for making oscillators with both MEMS and 

NEMS resonators arise from the fact that their electromechanical characteristics 

(described by equivalent circuit models) become increasingly incongruous with available 

electronics and circuit design techniques.  But there are specificities for each case.  

While capacitively-transduced MEMS resonators suffer from very larger motional 

resistances, a typical magnetomotively-transduced UHF NEMS resonator is 

compromised by its very small electromechanical impedance albeit their total impedance 

can still be fairly closely matched to RF electronics. 

  In parallel to its central status in frequency control, quartz technology has also played a 

chief role in resonant mass sensing [5] since the advent of quartz crystal microbalance 

(QCM), marked by the publication of the Sauerbrey equation in 1959 [24].  The 

self-sustaining crystal oscillators lead to a generic method for doing fast mass detection 
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in real time.  Not surprisingly, attaining excellent performance in MEMS/NEMS 

oscillators for both frequency control and resonant sensing demands and shares some of 

the same merits as the quartz crystal oscillators.  Therefore, the development of 

NEMS-resonators-based oscillators is a thrust toward the miniaturization limits of crystal 

oscillators within both contexts of mechanical signal processing and resonant mass 

sensing. 

  This Chapter deals with the experimental demonstration of a NEMS oscillator and the 

characterization of its system-level performance.  Our NEMS oscillator is the 

highest-frequency oscillator reported among all with flexural-mode vibrating MEMS and 

NEMS devices.  Compared to many other rudimentary nanodevcies prototypes, this is 

among the first nanodevice-embedded systems with practical complexity and 

functionality; and it demonstrates considerable potentials for sensing and RF 

applications. 

As depicted in Fig. 3.1, the self-sustaining oscillator outputs coherent RF signals while 

it only needs a DC power supply.  Here we attempt to replace the frequency determining 

elements, conventionally piezoelectric crystals [9,10,25] and lately MEMS resonators 

[12-18], with a high-Q SiC UHF NEMS resonator.  A doubly-clamped beam resonator 

has been patterned and fabricated from high-quality SiC epilayer with an optimized UHF 

SiC NEMS process [20].  The device’s mechanical resonance is excited and transduced 

magnetomotively [20].  The specific device has dimensions of 1.65µm (L) × 120nm (w) 

× 80nm (t) (excluding the ~50nm metallization layers on top), having its in-plane 

fundamental mode resonance at 428MHz with Q ≈2500.   
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3.3  Large-Signal UHF Resonance Readout for NEMS Oscillator 

3.3.1  Resonance Signal-to-Background Ratio (RSBR) 

Although the NEMS resonators operate in higher frequency bands (VHF, UHF and 

microwave) than their MEMS counterparts of the same kinds, self-sustaining oscillators 

have not yet been possible by utilizing MEMS or NEMS resonators operating well in 

these bands.  The major obstacle for realizing self-oscillation with our UHF NEMS 

resonators is that thus far the resonance signals read out from the UHF NEMS resonators 

are very small, while the embedding background response is usually overwhelming and 

dominates over the useful resonance signals.  To clearly address this issue, here we 

define the resonance signal-to-background ratio (RSBR) as the figure of merit, to 

characterize a resonance signal and its magnitude in the context of the embedding 

parasitic background response①, 
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where  is the resonance signal and ( )ωrV
v

( )ωbV
v

 is the background signal; both are 

frequency-dependent complex variables (i.e., vectors functions of frequency) and need to 

be carefully analyzed as phasors in a phase plane at any given frequency. A great 

convenience of this figure of merit is that the RSBR can be directly read from the 

resonance measurement instruments such as a network analyzer.  The RSBR goes to 0dB 

off-resonance, as off-resonance the resonance signal vanishes.  Given the complex 

                                                 

①We note that this may also be called on-to-off-resonance ratio, or ratio of on-resonance to off-resonance, 
as sometimes used in characterizing various resonances, in some other communities.
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nature and frequency dependency, we make the RSBR more transparent in the following 

form, 
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in which Vr(ω) and Vb(ω) are norms of ( )ωrV
v

 and ( )ωbV
v

, respectively (i.e., amplitudes 

of both signals and both phase-independent, Vr(ω)= ( )ωrV
v

 and Vb(ω) = ( )ωbV
v

); and 

( ) ( ) ( )ωφωφωφ br −≡∆  is the phase difference of the resonance signal with respect to the 

background response. 

  As an ideal case, if both the resonance signal and the background signal are in phase 

throughout the frequency range that the resonance covers, i.e., ∆φ(ω)=0 for 

ω0−∆ω≤ω≤ω0+∆ω, with ω0 the resonance frequency and ∆ω the resonance width, then 

we have, 
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  Still more ideally, it is also favorable that in the vicinity of resonance, the background 

response is constant, non-frequency-dependent, or at least a simple (e.g., linear) function 

of frequency that can be easily nulled out or subtracted. The maximum RSBR value is 

usually achieved at the frequency of resonance peak, and RSBR(ω=ω0) is used for 

characterization. In practical measurements of NEMS resonators, however, both in-phase 

and frequency-independent background responses are rare, especially for UHF NEMS.   
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Fig. 3.2  Phasor representation of the RSBR and the relation of resonance signal and the background 
at ω=ω0 (i.e., only the ‘slice’ at the resonance peak along the frequency axis) with the phase difference 
between resonance signal and background varied from 0 to π.  The phasor representations:  ( )0ωbV

v
 

is black, ( )0ωrV
v

 is blue, ( ) ( )00 ωω rb VV
vv

+ ( ) ( ) ( )( ) rbrb VVV ˆ000 ⋅−+ ωωω
vvv

is magenta, and red is  
where r̂  is the radial vector with unit module 1ˆ =r .  A positive red vector (pointing radially out 
from the origin) indicates the resonance peak is above the background (RSBR>0dB); and a negative 
red vector (pointing toward the origin) represents that the resonance is below background 
(RSBR<0dB).   

  To illustrate the effect of the background response visually, we shall use the phasor 

representation.  Shown in Fig. 3.2 are the phasor representations of both the resonance 

signal and the background at the resonance frequency (ω=ω0), with the phase difference 

∆φ(ω0) varied from 0 to π.  We assume the amplitudes of both resonance and 

background are phase-independent. For convenience, we use Vb=2Vr in the drawings 

while in reality usually Vb>>Vr and their sizes in the drawings would be much more 

widely discrepant. 

  Fig. 3.2 explicitly shows that when the background response is larger than or 

dominates over the interested resonance signal (Vb~Vr to Vb>>Vr), even only the phase 

difference can play a key role in determining the resulting RSBR that we measure (RSBR 
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decreases from positive to negative as ∆φ(ω0) is increased from 0 to π).  Note that 

ideally, the phase effect would become negligible if Vb<<Vr, which is almost always not 

the case for NEMS resonance detection.  Still, the scenario in Fig. 3.2 is highly 

simplified as it only takes care of the effect at one point, ω=ω0. 
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Fig. 3.3  Effect of phase difference upon RSBR for Vr(ω)=Va⋅Ha(ω) and Vb=10Va.  Inset: RSBR at 
the resonance peak, RSBR(ω0) as a function of ∆φ. 

  To examine the effect over the frequency range of the resonance peak, and to clearly 

demonstrate the significant impact of the frequency-dependent background response and 

phase difference upon the RSBR in typical detections, we consider a resonance signal 

with its peak amplitude of Vr(ω0)=Va=1nVolt (1nVolt=1×10-9Volt), 
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where Ha(ω) is the normalized resonance response of a driven resonator with a quality 

factor Q.  Again, first consider a very simplified case of frequency-independent, 
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constant background Vb(ω)=10Va=10nVolt, and further assume that the phase difference 

between the resonance and background is constant ∆φ(ω)=∆φ, over the frequency range 

of interest.  As depicted in Fig. 3. 3, for a constant background of 10 times the 

resonance peak amplitude, the resonance peak RSBR, RSBR(ω0), is always smaller than 

1dB and it varies from 0.83dB to -0.92dB as ∆φ changes from 0 to π.  The RSBR(ω0) 

dependency on ∆φ is essentially the same as illustrated in Fig. 3.2, with the only 

difference that in Fig. 3.3, the ratio of resonance peak amplitude to background is 1/10 

and in Fig. 3.2 it is 1/2.   
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Fig. 3.4  Effect of magnitude of the background response upon RSBR, for Vb=αVa (α=1/2, 1, 2, 10, 
50) with Vr(ω)=Va⋅Ha(ω) and ∆φ=0.  Inset: RSBR at the resonance peak, RSBR(ω0) as a function of 
α. 

  In another case we assume the resonance is simply always in phase with the 

background (∆φ(ω)=∆φ=0), and we examine the effect of the magnitude of the 

background.  As shown in Fig. 3.4 and its inset, background magnitude Vb(ω)=αVa is 

changed by varying α; and the RSBR(ω0) changes from 9.5dB to 0.17dB as α is varied 

from 1/2 to 50.  Abandon the in-phase assumption and allow ∆φ to change; each curve 
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with a specific α in Fig. 3.4 can be extended into a family of curves each corresponding 

to a specific phase difference.  Shown in Fig. 3.5 are such a family of curves for Vb=Va 

(α=1 case in Fig. 3.4).  If compared to Fig. 3.3, although qualitatively the effect of 

varying phase difference is similar, quantitatively in Fig. 3.5 RSBR(ω0) changes more 

dramatically, from 6dB to -∞dB (theoretically) as ∆φ is varied from 0 to π.  This 

illustrates that RSBR(ω0) is more sensitive to phase difference in the case of Vb=Va than in 

cases of Vb>>Va and Vb>Va, as shown in Fig. 3.3 and illustrated in Fig. 3.2. 
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Fig. 3.5  Dependency of RSBR upon the phase difference between resonance and background, for 
Vb=Va. Inset: RSBR at the resonance peak, RSBR(ω0) as a function of ∆φ. 

  In reality, the situations are always more complicated because the background is hardly 

constant or flat over the frequency range.  Still, we consider simplified special cases 

where the background is linearly frequency dependent, for example, Vb=Vb0+b±(ω-ω0) 

where b+ and b- are positive and negative slopes, respectively.  Shown in Fig. 3.6 are the 

effects on the RSBR with the background as a linear function of frequency.  For easy 

comparison, we use Vb0=10Va (same as in Fig. 3.3) and also plot the constant background 
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case.  It is shown that as the phase difference is varied, even the resonance peak shape is 

changed.  This is dramatically different than the cases where the background is constant, 

as shown in the previous several figures.  In practice, in a frequency range that embraces 

the resonance signal, although sometimes the background can be close to a polynomial or 

even linear function of frequency, often it can be nonlinear and far from constant or some 

typical friendly fitting functions, thus making the detected resonance peaks have quite 

funky shapes (see some examples in Fig. 3.6) as compared to a normal resonance signal 

given by eq. (3-4) whose power spectrum is very well approximated by a Lorentzian, as 

addressed in Chapter 2.   
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Fig. 3.6  Effect of non-constant but linear background upon the resonance shape and RSBR.  (a) for 

  The above analyses with introducing and discussing RSBR are very useful and 

linear background as function of frequency with a positive slope Vb=Vb0+b+(ω-ω0) (b+>0).  (b) for 
linear background with a negative slope Vb=Vb0+b-(ω-ω0) (b+<0).  As a reference, the case with in 
phase (∆φ=0) constant background Vb0 is plotted in both (a) and (b). 

important.  First, a much clearer understanding of the behavior of the detected resonance 

signal can be gained from the analyses and modeling.  Moreover, techniques can be 

sought and developed for better detection of resonance signals.  In real experimental 

measurements, particularly with VHF and UHF NEMS resonators, we have observed 

many detected resonance signals like those shown in Fig. 3.3 and Fig. 3.6, since in most 

cases the background response is large and non-constant.  As the frequency is scaled up 
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with ever-shrinking device sizes, these RSBR(ω0)<1dB and even smaller signals and their 

abnormal shapes constitute big issues and challenges. 

  One method of retrieving and extracting NEMS resonance signals from the measured 

  However, if further operation and processing of the resonance signal is needed, it is 

response involving the embedding background is to use the carefully recorded magnitude 

and phase data (or equivalently, both components in the X and Y quadratures).  This 

kind of data includes the frequency dependence of both the background and resonance, in 

the interested range.  The background and phase difference, both as functions of 

frequency, can be decomposed manually or by using software programs, and then 

subtracted, leaving only the useful resonance signal, which should essentially be 

consistent with eq. (3-4).  This sort of ‘postprocessing’ background subtraction 

technique has been widely used in the studies of NEMS resonators where the resonance 

curves are pretty much the final data, and it is valid and convenient for characterizing the 

basic properties and performance of the resonators based on the resonance data.  Besides, 

this background subtraction process does not enhance RSBR. 

desirable to have resonance signal with as large an RSBR as possible for the subsequent 

signal processing after the resonance readout.  In this case, the postprocessing 

background subtraction technique would not help.  One must devise some real-time and 

analog schemes (other than digital or software-based data postprocessing) that can 

effectively suppress the background, take care of the effect of phase difference and 

enhance RSBR, so that the resonance signal is friendly enough for direct manipulations in 

the next stages.  The aforementioned analyses on RSBR provide some intuition upon this 

issue:  For a specific NEMS device with its resonance signal strength given by eq. (3-4), 

the RSBR can be enhanced by generating an in-phase, constant background with as small 

as possible magnitude.   
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  In generations of experiments with VHF/UHF doubly-clamped beam resonators, we 

have found that direct reflection or transmission measurements of single device are valid 

to find and read out resonance signals up to ~200MHz.  For smaller and >200MHz 

devices, the recently proposed balanced-bridge detection scheme [26] has proven to be 

better, and for >100MHz devices it has demonstrated a visible advantage. 

  However, engineering NEMS into systems with attractive functionalities and 

promising performances requires much more beyond just finding resonance signals.  

There is still an intractable bottleneck—bridge scheme does help in finding UHF 

resonances which could be otherwise invisible, but the signals found are still too 

small—somehow having similar or lower efficiency as reflection (or transmission) 

scheme having in the HF/VHF ranges.  This is rooted from the fact that the prototype 

bridge scheme (and its analysis) was based on a DC bridge and it did not concern the 

frequency-dependent nature of both magnitude and phase of the background. 

3.3.2  High-Resolution Bridge-Balancing and Background-Nulling 

We have developed high-resolution balancing and background-nulling techniques based 

on the foregoing analysis of RSBR and the limitations of the prototype bridge circuit.  

The high-resolution techniques take care of both the frequency-dependent magnitude and 

phase of the background, and non-idealities such as reflection, attenuation, excess phase 

lag introduced by not only the device, but also every component, including every cable 

and microstripe, used in each branch of the bridge circuit.  We perform computer 

simulations of the frequency response of the whole bridge circuit, and calibration of 

frequency response of every component to gain enough pre-knowledge of the unbalanced 

magnitude and its sources (limiting factors).  Then we apply calibrated, high-precision, 

tunable amplitude and phase controls to each branch.  To best null the background 

response arising from mismatch, reflection, dispersion, etc., we have applied techniques 
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and controls including impedance matching, isolation, phase shifting, attenuation, etc., to 

perfectly match the two branches and null the background. 

 

Fig. 3.7  Network analysis measurement and open-loop calibration scheme of the UHF resonance 
detection with the high-resolution balanced-bridge circuit.  The band-pass filter (BPF) is optional in 
the resonance detection. 

As shown in Fig. 3.7, the UHF NEMS resonance detection is implemented and 

optimized in the mode of open loop network analysis by connecting a microwave 

network analyzer (HP 8720C) between nodes 1 and 2 for two-port measurement.  Fig. 

3.8 shows the significant effect of background nulling with the above high-resolution 

balanced-bridge circuit.  For the same pair of devices, compared to the results from the 

prototype of the balanced-bridge circuit (black) [26] and the improved version (green) 

[20], the high-resolution balancing has further achieved ~30−40dB background 
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suppression (blue) in a very wide band of interest.  In fact, we have identified that the 

new techniques now really allow us to approach the practical limits of the 

balanced-bridge circuit, with the bridge point really approaching ‘ground’.   
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Fig. 3.8  Background suppression by high-resolution bridge-balancing and nulling techniques.  
Over 100MHz frequency span, ~30−40dB background suppression has been achieved. 

  The only practical limitations are from the amplitude and phase tuning resolutions of 

the matching and balancing components we use here.  With this practically ultimately 

low background, we are now able to read out UHF NEMS resonance signals with a 

typical signal-to-background ratio of ~5−10dB in a wide band, which is comparable to 

signal levels from much larger and stiffer MEMS resonators [17,27].  This indicates a 

profound improvement in the UHF NEMS signal detection.  For example, as shown in 

Fig. 3.9, is the great enhancement in detected RSBR, from ~0.5dB to ~10dB, for the same 

428MHz resonance. 
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Fig. 3.9  Significant enhancement of RSBR with the use of high-resolution bridge-balancing and 
background-nulling techniques.  (a) & (b) The 428MHz resonance signal read out by using an earlier 
version of bridge scheme [20], with RSBR of the order ~0.1−0.5dB, and with signals upon with 
self-oscillation is impossible to be realized.  (c) The 428MHz resonance signal from the 
high-resolution balanced-bridge scheme, with typical ~8−10dB RSBR, and over very wide band, thus 
allowing for the resonator’s frequency-selection capability for achieving self-sustaining oscillation. 
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3.4  Self-Sustaining Oscillation with UHF NEMS Resonator 

3.4.1  Oscillation Conditions and Calibrations 

Retrieving a resonance signal with a large RSBR over a wide band makes it possible to 

use nanoresonators for frequency reference and selection.  To attain self-oscillation in a 

closed loop, at the selected frequency, the overall loop response should satisfy the 

Barkhausen criteria [4], i.e., loop gain: 

|H(ω)|≥1 (0dB),           (3-5a) 

and loop phase change: 

φ [H(ω)]=2nπ,           (3-5b) 

where n is an integer and H(ω) is the frequency-dependent loop transfer function.  We 

first perform open loop calibrations in the network analysis mode, to precisely tune the 

open loop gain and phase change to meet the Barkhausen criteria.  When the loop is 

closed, due to the inevitable reflection and phase change, the real (closed-loop) values of 

loop gain and loop phase change can be slightly different but the oscillation conditions 

can be restored by minor adjustments that make up the slight changes due to the closing 

loop action. 

  As Fig. 3.10 (a) illustrates, when the loop gain is tuned to allow loop gain ( ) 1≥ωH  

in the frequency range of ( 202101 , )δωωδωω +=−=  (δ1, δ2 << ω0/Q), the loop phase 

change can be tuned such that at some certain frequency ω ∈ ( )2010 , δωδω +− , the 

Barkhausen criteria are met and self-oscillation is attained.  The practical scenario of 

this implementation in real experiments is demonstrated by Fig. 3.10 (b) and (c), with the 

measured open loop gain and open phase change, respectively. 
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(c)  

Fig. 3.10  Realizing self-oscillation with NEMS.  (a) Schematic of satisfying the Barkhausen 
criteria for self-oscillation and optimizing the NEMS output by tuning loop phase shift.  (b) Loop 
gain measurement (in open loop scenario) for setting the oscillation condition at the vicinity of peak of 
the resonance signal.  (c) Measured loop phase change (in open loop scenario): arrows show the loop 
phase change can be tuned to 0 or 2π to satisfy the self-oscillation condition. 

3.4.2  NEMS Oscillator Basic Characteristics 

  After open loop calibration, as illustrated in Fig. 3.11, the network analyzer is removed 

and the loop is closed by feeding output back to input (connecting points 1 and 2) and the 

oscillation with the NEMS resonator is realized.  In stable oscillation, the only input to 

the system is the DC power supply for the sustaining amplifiers, and the output 
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radio-frequency signal can be straightforwardly characterized.  One compelling 

characteristic of the NEMS oscillator is, in its closed-loop mode, once the Barkhausen 

criteria is satisfied at the resonance peak, the stable oscillation is easily switched on/off 

by simply turning on/off the DC power supply for the sustaining amplifiers.   

 

Fig. 3.11  Measurement setup for realizing the self-sustaining oscillation with UHF NEMS 
resonators.  The sample chip consists of a pair of doubly-clamped vibrating NEMS resonator devices 
made by a nanofabrication process for high-frequency SiC NEMS (bright color showing Al 
metallization of the devices and close-in pads), and conducting pads defined by photolithography 
(yellow color, Au metallization) for wire-bonding.  On-stage temperature sensor and heater for 
controlling the sample temperature are mounted on the backside of the sample stage.  The sample is 
secured in a high-vacuum chamber (<10-7 Torr).  In the magnetomotive transduction setup, the 
chamber is housed in a cryostat where the superconducting magnet runs and provides an up to 8 Tesla 
strong magnetic field for magnetomotive excitation.  The pair of NEMS devices are connected to 
room-temperature electronic system outside of the cryostat via three coaxial cables (each 6 feet long) 
to a balanced-bridge circuit scheme.  The feedback loop of the NEMS oscillator consists of 
low-noise amplifier, phase shifter, filters for setting the oscillation conditions and a directional coupler 
to facilitate the oscillator output to be characterized straightforwardly. 
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Fig. 3.12  Demonstration of the UHF NEMS Oscillator.  (a) Resonance signal (open loop response) 
from the 428MHz NEMS resonator, which serves as the frequency-determining element of the 
oscillator.  The resonance signal is accurately measured with a calibrated microwave network 
analyzer.  Resonance-to-background ratio of 8dB is achieved.  The solid line is from the Lorentzian 
fit to the resonance.  (b) Power spectrum of stable self-oscillation of the NEMS oscillator with peak 
output power 5dBm, measured by a spectrum analyzer.  (c) Time-domain output waveform of the 
NEMS oscillator, measured by a high-speed oscilloscope.  (d) FFT spectrum of the measured 
time-domain output waveform, which verifies the direct power spectrum measurement. 

  In its self-oscillating mode, the NEMS oscillator is readily characterized.  Fig. 3.12 

summarizes the basic characteristics of this first UHF NEMS oscillator, with the larger 

RSBR resonance signal (calibrated, and referred to the preamplifier) highlighted in Fig. 

3.12 (a).  Fig. 3.12 (b) shows a representative measured power spectrum at the output of 
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the NEMS oscillator.  The output peak power is 5dBm (i.e., 3.2mWatt RF power, or 

equivalently, 0.405Volt for 50Ω standard).  Fig. 3.12 (c) shows the time-domain stable 

oscillation waveforms measured by a fast oscilloscope, and Fig. 3.12 (d) is the FFT 

spectrum of the measured time-domain waveform data.   

Table 3-1  Basic specifications of the UHF NEMS oscillator and its NEMS resonator 

Specification Value

Device Length 1.65 µm
Device Thickness (structural layer) 80 nm
Device Width 120 nm
Resonance f0 428.2 MHz
Structural Material 3C-SiC (single-crystal)
Metallization 10 nm Ti atop 40 nm Al
Device Active Mass 57.8 fg
Device DC Resistance R  (T≈300K)DC 92.9 Ω
Device DC Resistance R  (T≈22K)DC 51.7 Ω
S  (device)x,th

1/2 1.75×10  m/√Hz-15

S  (device)V,th
1/2 3.25×10  volt/√Hz-11

S  (device)F,th
1/2 2.93×10  N/√Hz-16

DR (device) (intrinsic, 1Hz ENBW) 114 dB
S  (system, refer to in put of preamp)V,real

1/2 2.47×10  volt/√Hz-10

S  (effective displacement sensitivity)x,eff
1/2 1.33×10  m/√Hz-14

DR (device, available, 1Hz) 96 dB
Resonance Signal-to-Background Ratio (RSBR) 8 dB
Output Power 3.2 mWatt (5 dBm)

  We have carefully examined the specifications of the oscillator system and its 

frequency-determining element, the UHF NEMS resonator, as some characteristics 

summarized in Table 3-1.  In the mechanical domain, the doubly-clamped resonator can 

be modeled as a Duffing mechanical oscillator (see Chapter 2) (the ‘oscillator’ here is just 

a conventional nomenclature, different from the stable electrical oscillator, which is 

self-sustaining).  The ultimate noise floor of the NEMS resonator’s displacement is set 

by the thermomechanical noise—when the device is driven to resonance by the stochastic 
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process, i.e., Brownian motion (random thermal fluctuation), the displacement spectral 

density is 

3
0

21 4
ωeff

B
x M

TQkS = ,            (3-6) 

where T is temperature, Q is the resonator’s quality factor, m the mass and ω0 the 

resonance frequency.  Set by equation of Duffing oscillator, the critical amplitude is 

EQ
LaC

ρ
π

ω 3
2

2
0= ,           (3-7) 

where L is the beam length, ρ the mass density and E the modulus of elasticity of the 

resonator material.  As the useful onset of nonlinearity is defined by the 1dB 

compression point, where the displacement is 0.745aC, the intrinsic dynamic range (DR) 

of the NEMS device itself is then determined by the ratio of the onset of nonlinearity to 

the thermomechanical noise floor [28], 

DR [dB] = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆fS
a

x

C

2
745.0log20 ,         (3-8) 

in which ∆f is the measurement bandwidth.  In magnetomotive transduction, the noise 

floor of the electromagnetomotive voltage, generated by the thermomechanical motion of 

the resonator, is 

0

21 4
ωeff

B
V M

TQkBLS = ,           (3-9) 

where B is the magnetic field in the magnetomotive transduction.  With the parameters 

of the device and experimental settings, ideally we have critical displacement amplitude 

of aC≈1.6nm, displacement noise floor of Sx,th
1/2=1.75fm/√Hz, and thus a dynamic range 
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of DR=114dB, and a voltage noise floor of SV,th
1/2=0.0325nVolt/√Hz, ultimately 

determined by the NEMS device itself.  If employed for force detection, the device’s 

thermomechanical-noise-limited force sensitivity is SF,th
1/2=0.29fN/√Hz.   

In the electrical domain, however, the real dynamic range that can be achieved is 

determined by both the onset of nonlinearity and the noise floor of the detection system, 

referred to the input of the low-noise preamplifier which has a noise temperature Tn=9K 

at the frequencies of interest, and an input impedance of 50Ω.   

In the electronic detection of the device resonance, at a device temperature of T=22K, 

the voltage noise floor is SV,real
1/2=0.247nVolt/√Hz, refer to the input of the preamplifier, 

as limited by the Johnson noise from the equivalent resistance of the devices and the 

noise from the preamplifier.  This corresponds to a displacement sensitivity of 

Sx,eff
1/2=13.3fm/√Hz, achieved in the detection.  This then leads to an available dynamic 

range of DRavailable=96dB.  The less-than-ideal dynamic range is because of the fact that 

the actual noise floor referred to the input of the preamplifier dominates over the intrinsic 

noise floor of the NEMS resonator device.   

3.5  Phase Adjustment and Oscillator Frequency Detuning 

In establishing self-oscillation, we have found that in the vicinity of loop gain larger than 

1, the self-oscillation peak frequency can be detuned by finely tuning the loop phase 

change.  As sketched in Fig. 3.10 (a), and shown in Fig. 3.13 with measured data, when 

the loop phase change is tuned, the oscillation frequency can be swept within the range of 

( 2010 , )δωδω +− , from one side to the other side of the resonance peak frequency ω0; 

and the oscillator output power is also observed to go across the maximum.  The 

frequency detuning due to loop phase change variation is about 300ppm/90deg, as shown 

in Fig. 3.13 (a).  For better stability and phase noise performance, it is desirable to tune 
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the system to set the oscillation at the frequency of the resonance peak.  We make sure 

this has been attained for every important measurement and calibration. 
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Fig. 3.13  NEMS oscillator frequency detuning with varied loop phase change.  (a) Oscillator 
frequency and output power variations as the phase is shifted to satisfying the oscillation from one 
side to the other side of the resonance peak (as also illustrated in Fig. 3.10 (a)).  (b)  Raw data of 
the oscillator output power spectrum as the loop phase-change is tuned (all data taken while NEMS 
resonator is operating at stabilized temperature, and at fixed sustaining amplifiers gains, simply tuning 
only the loop phase change).   
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3.6  NEMS Oscillator Frequency Pulling and Nonlinear Behavior 

We have also demonstrated that the NEMS oscillator frequency can be pulled by the loop 

gain tuning and the magnetic field change.  The NEMS oscillator frequency pulling 

mechanisms are based on the fact that both the loop gain and magnetic field change 

induce change of the driving force upon the doubly-clamped resonator, which is readily 

described by the forced Duffing equation (see Chapter 2 for general discussion), 

( tyy
dt
dy

dt
yd

ΩΓ=+++ cos2 32
02

2

αωµ ),       (3-10) 

where y is the beam displacement (in-plane), 2µ≡ω0/Q with µ the damping coefficient, 

Γ≡F/m with m the device mass; F the driving force, and Ω the driving frequency.  The 

cubic nonlinearity coefficient is ( ) ( )ρπα 182 4 EL= , determined by the geometry and 

elastic properties of the beam.  This coefficient α can also be related to the critical 

displacement aC (defined at the onset of nonlinearity), ( ) ( )22
0 938 CQaωα = .  Based on 

the Duffing equation description of the doubly-clamped beam resonator, both the 

amplitude and the resonance peak frequency are dependent on the driving force.  The 

relationship between the NEMS resonator beam amplitude a and the frequency pulling σ 

(σ≡ωpeak−ω0, with ωpeak the resonance peak frequency) is readily described by the 

frequency-response equation, 

2
0

2

2

0

2

48
3

ωω
ασµ Γ

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+ a ,         (3-11) 

in which ( ) ∞=
Ca

dadσ sets the onset of nonlinearity and the critical amplitude aC.  As 

the drive strength Γ is increased, the relationship between the resonance peak frequency 

ωpeak and the amplitude at this peak frequency, i.e., the backbone curve, is 
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2

0
0 3 ⎟⎟

⎞ak ,        (3-12) 
⎠

⎜⎜
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⎛
=−≡
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pe
peakpeak a

a
Q

ωωωσ

where 2
0ωQapeak Γ= , and ( ) ( ) 2

0, 2323 ωQaa CCpeakC Γ== , with apeak,C the peak 

amplitude at the critical driving ΓC.  With these relations, eq. (3-12) can be rewritten as 

2

0
0 33
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⎞
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⎝

⎛
Γ
Γ

=−≡
C

peakpeak Q
ωωωσ ,        (3-13) 

where the drive force Γ is readily determined by the transduction scheme and RF driving 

power sent to the device in a real measurement, and thus the backbone behavior in eqs. 

(3-12) and (3-13) can be calibrated by sweeping the driving force in measurements.  

Therefore, both the backbone curve and the frequency-response curves can be 

experimentally determined.   
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Fig. 3.14  Duffing behavior of the NEMS resonator calibrated in measurements: the 
frequency-response curves and the backbone curve (resonator peak amplitude versus resonance peak 
frequency).  The family of frequency-response curves shows the NEMS beam resonator 
displacement in nanometers versus frequency (as described in eq. (3-11)).  Inset: the linear fit of 
measured frequency pulling versus driving force squared (Γ2=(F/m)2), according to eq. (3-13).   
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  As shown in the inset of Fig. 3.14, the measured frequency pulling versus squared 

driving force is fit linearly according to eq. (3-13), and then the behavior described in eqs. 

(3-11), (3-12) and (3-13) can be quantitatively determined.  By combining the extracted 

data from measurements and the theory of Duffing nonlinearity, the frequency-response 

curves are reproduced and plotted in Fig. 3.14, which show the onset of nonlinearity is 

attained when the RF power sent to the NEMS device is about -29dBm, exactly the same 

as observed in network analysis measurements.  This verifies the validity of the above 

analyses, and also demonstrates reliable prediction of device absolute displacement (in 

nanometers) as the driving force is increased.  It is noted that because the cubic 

nonlinearity coefficient α>0, the frequency pulling is a spring stiffening effect.   
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Fig. 3.15  Measured NEMS oscillator output frequency pulling with calibrated sustaining 
amplification gain change (i.e., the change of RF power sent to the NEMS device).  Inset: NEMS 
oscillator output power versus frequency pulling.  Note when the sustaining amplification gain is 
smaller than some certain value (here ~90dB) there is no measurable oscillation.   

The above analyzed and calibrated effect of NEMS resonator directly determines the 

behavior and performance of the NEMS oscillator.  As shown in Fig. 3.15, when the 
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feedback amplification gain is changed and thus the RF power driving the device is 

changed accordingly, the NEMS oscillator output spectrum changes both its peak power 

and peak frequency (in each case, the loop phase change is tuned to optimize the 

oscillation to happen at the resonance peak frequency, as addressed in the previous 

section).  The oscillation frequency is pulled upward, as a result of the resonator’s 

frequency stiffening effect, when the loop gain is increased.  Shown in the inset of Fig. 

3.15 is the relation of oscillator output versus oscillation frequency, which follows the 

tendency as depicted by the backbone curve of the NEMS resonator in Fig. 3.14.   

The nature of the frequency pulling effect of the NEMS oscillator is based on the 

transition from linear to nonlinear regime of a doubly-clamped beam Duffing-type 

resonator, as the driving force is increased.  Spontaneously, it becomes very intriguing 

to drive the NEMS resonator into the nonlinear regime, and to realize and then 

characterize the nonlinear oscillation with NEMS.  Moreover, once self-oscillation is 

realized with a nonlinear NEMS resonator, the noise-induced switching of 

self-oscillations between the bistable states of the same frequency-determining resonator 

could be very interesting and important for both fundamental research and technological 

applications [29].   

3.7  Phase Noise of the UHF NEMS Oscillator 

As illustrated in the oscillator system setup in Fig. 3.11, the oscillator mode greatly 

facilitates the characterization of the oscillator.  Measurements ranging from spectrum 

analysis to phase noise and frequency stability can all be performed by directly 

measuring the output of the NEMS oscillator.  In this regard, the NEMS oscillator 

technology has a major advantage for characterizing the noise, stability and sensitivity of 

the NEMS-resonator-embedded system, as compared to the other technology of using an 

external oscillator to drive the passive resonator and to detect and track its resonance in a 

phase-locked loop (PLL).   
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We have conducted systematic studies on the NEMS oscillator’s phase noise and 

frequency stability performance, since noise and sensitivity are crucial for both 

communications and sensors applications, and the trade-off is that the smaller and more 

sensitive the device, the more susceptible it is to noise.  Of practical importance, low 

phase noise is desirable for UHF signal processing and communications [4,12-18,30], and 

sensitivity is most essential for transducer applications such as mass sensors [31,32].   
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Fig. 3.16  Phase noise performance of the NEMS oscillator for offset frequency from 10Hz to 1MHz, 
measured by a specialized phase noise analyzer (RDL NTS-1000B Phase Noise Analyzer).  Shown 
are the measured data, the theoretical prediction based on oscillator phase noise theory [33] and the 
calculated ultimate phase noise performance limited only by the NEMS resonator device itself. 

Measured phase noise performance of the oscillator system is shown in Fig. 3.16.  

The measured data suggests the present system performance is thermal noise limited (i.e., 

following the 1/f 2 power law on the phase noise plot).  Given the detection noise floor 

analysis in Section 3.4.2, the electronic thermal noise (Johnson) plus the amplifier noise 

overwhelms the thermomechanical noise of the NEMS device.  Hence the thermal noise 

induced phase noise limits the oscillator performance, leaving the device’s 

thermomechanical noise induced phase noise still a fundamental limit to be approached.   
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  The measured phase noise is readily modeled based on the intuitive understanding of 

phase noise in terms of phase diffusion [33].  As the extrinsic electronic noise at the 

input of the preamplifier dominates, the measured phase noise can then be predicted by 

( ) 22
2

D
DS
+

=
ω

ωφ ,           (3-14) 

where D is the phase diffusion constant and ω the offset frequency.  Phase diffusion 

constant can be determined by electrical domain measurement according to 
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where PS is the power dissipated in the equivalent resistive element that contributes the 

same amount of electronic noise.  As shown in Fig. 3.16, the theory predicts 1/f 2 

behavior and matches pretty well with the measured data.  The ultimate phase noise 

performance set by the NEMS device’s intrinsic thermomechanical noise is also shown in 

Fig. 3.16 (theoretical discussions and equations are addressed in Chapter 2).  This limit 

could be achieved if the transduction and feedback electronics are ideally noise-matched 

to the NEMS device.  The comparison of measured data and calculations suggests 

important guidelines for further optimization and engineering of the NEMS oscillators 

with improved phase noise performance.  By approaching the thermomechanical noise 

floor of the NEMS resonators, it will become possible for NEMS oscillators to compete 

with or even win over the phase noise performance of conventional bulky crystal 

oscillators.   

Fig. 3.17 shows the measured phase noise when the UHF NEMS device is driven at 

different levels to assume different vibrating amplitudes in the self-oscillating mode.  

Note in this set of measurements, we still keep the device operating well in the linear 

regime, which we assure by our careful calibrations as discussed in the previous sections.  
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The measured data demonstrates decreased phase noise as the NEMS resonator is driven 

to larger amplitudes within its mechanical dynamic range.  Here a small increment is 

used in increasing the drive in order to make sure reliable phase noise measurement can 

be performed by the analyzer at all the levels in this range.  Our observed phase noise 

dependence on resonator amplitude is more reasonable compared to that in another study 

reported in [34], because better phase noise performance should be expected with 

increasing power handled by the resonator.   
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Fig. 3.17  Phase noise measured at different drive levels, showing that within the dynamic range of 
the NEMS device, the higher the drive, the lower the phase noise. 

3.8  Frequency Stability and Mass Sensitivity 

Time-domain frequency stability is another crucial specification and measured data are 

shown in Fig. 3.18.  The NEMS oscillator’s instantaneous output oscillating frequency 

is recorded with a high-precision counter in real time, with the raw data shown in Fig. 

3.18 (a).  The measurements have been performed at stabilized temperature, but under 

non-vibration-proof condition in a non-electrical-screening room.  Fig. 3.18 (b) 
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demonstrates the Allan deviation as a function of averaging time [35] (see also Chapter 2 

for discussions and equations about Allan deviation).   
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Fig. 3.18  NEMS oscillator frequency stability.  (a) Instantaneous oscillating frequency of the 
NEMS oscillator output, measured by a precise counter in real time, for a time interval of longer than 
one hour.  (b) Allan deviation of the NEMS oscillator, showing a typical behavior of a crystal 
oscillator, with a minimum of 3×10-7 for averaging time in the range of about 0.2−1sec.  For 
200msec to 1sec interval, the NEMS oscillator’s fractional frequency fluctuation is ~0.3ppm.  The 
data also show that the maximum observed frequency instability is just about 1ppm, even for intervals 
as long as 10 minutes to ~1 hour. 

The measured Allan deviation versus averaging time shows similar characterizations 

with those of crystal oscillators and other time standards [25,36], with the optimized 

value of 3×10-7 (3ppm) at ~0.2−1sec averaging time.  This level of frequency stability 

directly translates into a real-time mass sensitivity of ~50zg, given the UHF NEMS 

device’s ultra-small mass (57.8fg) and ultra-high mass responsivity (3.7Hz/zg) [31,32].  

Compared to the alternative scheme for real-time mass sensing by incorporating 

VHF/UHF NEMS resonators into low-noise PLLs [32,37], the NEMS oscillator provides 
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much wider band operations (~0.2MHz) and does not need an external more stable active 

oscillator to drive the passive NEMS resonator device, while completely allowing 

self-oscillating and self-sensing.  This uniqueness is even more remarkable for arrays of 

NEMS sensors, where arrays of engineered NEMS oscillators work as independent 

sensors and their self-sensing signals, each from an individual oscillator’s RF output, can 

be retrieved, recorded and processed in parallel at the same time.  This indicates a great 

advantage over the cantilever static deflection measurements with optical techniques 

[38,39] for arrays of sensors where the real-time dynamic response from sensors could 

not be detected concurrently.   

3.9  Advanced NEMS Oscillators and NEMS Oscillator Arrays 

The above realization and characterization of the first self-sustaining NEMS oscillator at 

UHF immediately makes it possible for future exploration and engineering of more 

advanced NEMS oscillators such as coupled oscillators, and voltage-controlled oscillators 

(VCOs).  It also stimulates the designs of novel oscillators based on arrays of coupled 

NEMS resonators and active NEMS oscillator arrays that may be interesting for 

multiplexing sensing and multi-channel information/signal processing.   

Fig. 3.19 (a) demonstrates the designs of two self-sustaining NEMS oscillators with 

their frequency determining NEMS resonators coupled by certain mechanisms.  The 

coupling between two similar oscillators here is non-mechanical; but can be electrostatic, 

or magnetic (spin-coupled).  The coupling can then introduce interesting frequency 

tuning and pulling effects and that the synchronization between the two active oscillators 

can be tuned and realized, which is very important and interesting for signal generation, 

processing and pattern forming applications.   

Moreover, by introducing frequency tuning via DC voltage coupling to either of the 

NEMS resonators as shown in Fig. 3.19 (b), voltage-controlled oscillator can be realized.  
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Meantime, the NEMS VCO functionality can be further enhanced by synchronization 

with another NEMS oscillator or NEMS VCO through coupling between the NEMS 

resonators.   

 

Fig. 3.19  Schematic and design of advanced NEMS oscillators.  (a) Coupled oscillators with 
non-mechanical coupling, and (b) voltage-controlled oscillators (VCOs) based on NEMS resonators and 
coupled NEMS resonators.   

Fig. 3.20 (a) shows the design of self-sustaining oscillator based on an array of 

mechanically-coupled NEMS resonators.  Mechanically-coupled arrays possess much 

larger signal strength and power handling capability, as compared to single resonator 

device.  The better power handling and lower phase noise performance of such NEMS 

oscillators with arrayed resonators are interesting for future nanomechanical signal 

processing and communication applications.   
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The schematic shown in Fig. 3.20 (b) demonstrates a new paradigm of multiplexing 

signal/information processing based on an array of self-sustaining NEMS oscillators.  

Each of the NEMS oscillators in the array is based on a NEMS resonator integrated with 

its tuned feedback circuit.  As arrays of vibrating NEMS resonator devices are being 

batch-fabricated with growing yield, this technology would be of critical importance for 

real-time, multi-channel sensing and parallel signal detection technologies based on large 

arrays of NEMS devices.   

 

Fig. 3.20  Schematic and design of active NEMS oscillators with arrays of NEMS resonators.  (a) 
NEMS oscillator based on arrays of coupled NEMS resonators.  (b) NEMS oscillator arrays for 
multiplexing signal/information processing based on arrays of NEMS resonators and their sustaining 
feedback back loops, and the multiplexing control and interface circuits.   
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3.10  Chapter Summary 

The work presented in this chapter is the first demonstration of a self-sustaining oscillator 

with low-noise performance and high frequency stability by using a vibrating UHF 

nanomechanical device as the frequency-determining element.  The operating frequency 

(well in the UHF range) is much higher than both ordinary quartz crystal units (including 

those with overtones) and recently reported oscillators based on vibrating MEMS 

resonators.  This has been possible because of not only the low-loss resonator device, 

but also the unprecedented large signal readout from UHF NEMS resonators by greatly 

enhancing the RSBR.  We believe this is an important milestone for engineering 

rudimentary nanoscale devices into functional systems with considerable complexities 

and performance.  Apparently, this is a further step on the way to the unceasing 

miniaturization of crystal oscillators; and immediately this technology provides a 

promising protocol for real-time high-precision nanomechanical resonant mass sensing, 

with both individual and arrays of nanodevices. 

  The self-oscillating NEMS systems would also be useful tools for the development of 

new measurement paradigms for detecting nanomechanical resonators coupled to 

single-quanta effects [40,41], to register single-molecule, single-spin and single-photon 

coupling events.  The NEMS oscillator technology also makes it possible to realize 

self-oscillating systems based on ultrahigh-Q nanophotonic resonators, considering 

radiation-pressure driven mechanical resonators [42] and other possible 

optical-mechanical coupling effects.  The UHF NEMS resonator operates at RF power 

in the picowatt to nanowatt range, suggesting possibilities for ultra-high-density 

integration of arrayed sensory and signal processing systems, with modern integrated 

circuit technologies [43].   

Demonstration of the NEMS oscillator clearly shows that UHF nanomechanical 

resonators can be embedded into feedback control circuitry to realize complex 
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system-level functions and performance that are critical for future practical applications 

of nanodevices.  The NEMS oscillator specifications and performance make it very 

attractive for ultra-sensitive transducers in a self-oscillating and self-sensing mode, with 

particular advantage for arrays of sensors, and also for novel measurement schemes for 

probing fundamental physical and biological phenomena.   

For further exploration and engineering, advanced NEMS oscillators such as coupled 

and synchronized NEMS oscillators, voltage-controlled NEMS oscillators have been 

proposed and considered to be interesting.  NEMS oscillators based on coupled arrays of 

NEMS resonators may be expected to have better power handling and phase noise 

performance.  Active NEMS oscillator arrays where each oscillator has its own 

feedback control would be an important technology for real-time multiplexing NEMS 

sensing.   
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Chapter 4 
 
Ultra-High Frequency NEMS Resonators 
with Low-Noise Phase-Locked Loops 
 
 

Phase-locking and resonance frequency tracking technologies offer a generic 

solution for real-time sensing applications based on resonant mechanical 

devices.  This Chapter presents the development of systems with UHF 

vibrating NEMS resonators embedded in low-noise phase-locked loops 

(PLLs), and the frequency stability and phase noise performance 

characterized by using this UHF NEMS-PLL technology.  The study is 

carried out for generations of UHF NEMS resonators in the 200~500MHz 

range and thus creates roadmaps of characteristics and performances of 

UHF NEMS resonators.  It is demonstrated that these UHF NEMS devices 

have excellent frequency stabilities that, if directly employed for resonant 

mass sensing, translate into unprecedented mass sensitivities well in the 

zeptogram (zg) range, approaching 1zg level with ~500MHz devices.  

Besides the NEMS resonant mass sensing paradigm, the NEMS-PLL 

technology is also a canonical method to measure the phase noise of NEMS 

resonators.  The demonstrated excellent characteristics of these devices are 

approaching the projected specifications of the local oscillator (LO) required 

for the development of microfabricated chip-scale atomic clocks (CSAC). 
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4.1  Nanomechanical Mass Sensing Protocols 

The mass sensing technologies employing resonant mechanical devices have had a 

moderately long history featuring the wide applications of quartz crystal microbalance 

(QCM) since the late 1950’s [1,2].  Resonant mass sensing is based on the simple 

principle of a resonator’s mass loading effect—due to the mass attached to the resonator 

body, the resonance frequency is shifted (as analyzed in Chapter 2); the frequency shift 

can be measured with high precision, which is a feat well established in physics, and thus 

the loaded mass is measured.  MEMS and NEMS resonant sensors, working with the 

same principle, have become especially attractive because their smaller and smaller 

masses—enabled by the continuously shrunk devices—lead to more and more responsive 

devices and thus generally promise higher sensitivities.  Naturally nanoscale resonators 

are interesting candidates to take resonant mass sensing into the regime where 

single-molecule events can possibly be probed.  Ultimately, it is expected to achieve 

real-time single-molecule counting with single-Dalton resolution.  This chapter 

describes some of our latest efforts and progress toward these goals.  It is mainly on the 

technology of NEMS resonators with low-noise PLLs, which is a powerful alternative in 

parallel to the self-sustaining oscillator technology discussed in Chapter 3. 

  Recently, researchers have been racing for the records of pushing the practical limits of 

mass sensing with MEMS and NEMS devices.  It has been reported that micron-scale 

MEMS cantilevers can achieve femtogram-scale (1fg=10-15g) and attogram-scale 

(1ag=10-18g) sensitivity [3-8], and resonance frequency changes induced by single cell 

and virus attached onto these devices have been measured [5-8].  However, these studies 

have usually been done in separate experiments in which a device’s resonance frequency 

is first measured, and the device is then taken out of the measurement system (chamber) 

for a process involving the attachment of containments, and at last the device is reloaded 

and measured again to search for a difference in resonance frequency.  It may be 
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possible that the measured minute frequency shift is due to the loading mass of the 

containments and thus demonstrating the device’s mass sensitivity, but this paradigm is 

somehow awkward and cannot be directly implemented or easily implanted for sensing or 

detection in practice. 

  A valid sensing or detection protocol necessarily implies that when the events are 

occurring, the sensor or detector is working (sensing or detecting).  So we have been 

making efforts to develop a generic protocol for real-time and in situ nanomechanical 

mass sensing—a protocol that would allow us to not only read out the resonance signals 

of the devices, but also to apply feedback and control over the signals so that we can 

monitor, lock, and track the resonance signals in real time while the mass loading events 

are taking place in situ.  We believe this is crucial and probably the indispensable route 

towards future functional NEMS-based sensors and detectors for real applications.  

Further, according on the theoretical foundations in Chapter 2, we aim to push for the 

fundamental limits of mass sensing technologies within this protocol by utilizing 

high-performance NEMS. 

  There are two primary approaches for feedback control and real-time NEMS resonance 

locking and tracking.  One is to apply positive feedback upon the NEMS resonance 

signal to realize a self-sustaining oscillator system (see Chapter 3); the other is to apply 

negative feedback and involves the use of phase-locking techniques.  The phase-locking 

protocol requires a voltage-controlled oscillator (VCO), which should be much more 

stable and less noisy than the device under test (DUT)—the NEMS resonators in the 

present studies.  It is more convenient and flexible to test, implement and engineer the 

phase-locking technology for passive resonator devices within a laboratory setting. 

  With the above goals and strategies, recently analyses have been done to address the 

influencing factors for the responsivities and frequency fluctuation resolutions of NEMS 

devices in real-time sensing measurements, and to discuss the ultimate limits of mass 
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sensitivity [9].  Experimentally, phase-locked loop schemes have been specifically 

devised for HF and VHF NEMS resonators, and real-time sensing experiments have been 

carried out with demonstrated attogram- to zeptogram-scale sensitivities [10,11].  These 

advances are exciting and encouraging us to continue pushing the limits of 

nanomechanical mass sensing.  In this effort, we have designed and fabricated 

generations of NEMS resonators operating in the UHF regime, and performed extensive 

experiments with the engineered PLL systems incorporating the UHF devices.   

4.2  Embedding NEMS Resonator into PLL 

Phase-locking techniques, or specifically, phase-locked loop (PLL) systems have evolved 

to be very mature technologies since the early research dating back to the 1930’s.  They 

have been extremely useful in radios, communications, computers, instruments and many 

other electronic applications.  There are many textbooks and monographs on PLL 

systems and their applications in various fields.  References [12-15] provide excellent 

introductions to PLL systems and cover some of the most important modern topics and 

applications.   

  Despite the maturity of PLL techniques, it has been non-trivial to incorporate a NEMS 

resonance signal into a low-noise PLL to have the PLL lock onto and track the NEMS 

resonance in real time.  This is primarily due to the specificities of the NEMS resonance 

signals, rather than the PLL principles and techniques.  For HF NEMS resonators, a 

PLL based on the conventional simple homodyne detection scheme has been used [10].  

For VHF devices, however, this scheme has become less effective due to the reduction in 

NEMS signal strength.  We have then explored two routes to conquer this for the VHF 

resonators.  One is using a mechanically-coupled two-port device to separate the drive 

and sensing elements so that the direct electrical feedthrough or cross-talk coupling from 

the drive port to the sensing port can be suppressed.  In this case, the PLL is still based 

on the homodyne detection scheme and it works but it has been difficult to achieve 
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high-Q’s and scale up the frequencies for the mechanically-coupled two-port devices 

with the available technologies.  The other is introducing a frequency modulation 

phase-locked loop (FM-PLL) scheme but still using a one-port single doubly-clamped 

beam resonator.  It has turned out that the FM-PLL scheme is working very well [11, 

16].  In each of these demonstrations of HF and VHF NEMS devices with PLL, the 

NEMS resonance signal have been read out by the reflection measurement scheme with a 

single device.   

  For UHF NEMS devices, the resonance signals are better read out by using a bridge 

circuit (as discussed in Chapter 2 and Chapter 3), and the bridge detection circuit is 

incorporated in the whole PLL system [15].  This actually also provides an advantage 

that two resonances detected from the bridge circuit can both be embedded into the PLL, 

respectively, if needed, thus allowing us to characterize more devices.   

 

Fig. 4.1  Block diagram of NEMS resonance phase detection scheme—the core for implementing a 
PLL with NEMS resonator. Dashed line indicates feedback for closed-loop operation. 

  Fig. 4.1 shows the essential ingredients of the NEMS resonance phase detection 

scheme upon which the PLL is built.  The signal from a stable VCO is split, “processed” 

by the NEMS and mixed with itself.  In other words, the VCO drives the NEMS 

resonator, and the NEMS response signal is mixed against the initial VCO driving signal.  

Note in this schematic the NEMS resonance block includes the balanced-bridge 

resonance detection circuit.  As the VCO driving frequency is swept through the 

resonance, the NEMS induces a large phase shift (ideally 90°) with respect to the original 
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driving signal.  The mixing of the RF and LO signals yields a quasi-DC signal at the IF 

port.  In the open-loop operation mode, the resulting IF signal can be monitored directly 

and its magnitude measures the difference between the VCO frequency and the NEMS 

resonance frequency.  Naturally, since the IF has the correct form for an error signal, it 

can be fed back to the VCO (dashed line) to lock the VCO frequency to the NEMS 

resonance frequency—this is the closed-loop mode. 

  In practical operations, the open-loop mode is used mainly for testing and for the 

absolute stability of the NEMS in conditions of no thermal drift and no mass accretion.  

The closed-loop mode is particularly amenable to track thermal- and mass-induced 

frequency changes.  In case there is no mass accretion but the NEMS is subject to 

thermal fluctuations and other random noise processes, the closed-loop mode can then be 

employed to measure the frequency fluctuation noise floor due to these mechanisms.  It 

is very convenient to use a precise counter to record the frequency output of the VCO.  

This lays the foundation for its applications in real-time phase locking and resonance 

frequency tracking. 

  As shown in Fig. 4.1, if the phase detector is operated far from saturation (i.e., as a 

mixer) we have the following signals at the mixer ports, 

( )
( )

( )[ ]ϕωϕ

ϕω
ω

+−−

+

tAA
tA

tA

2coscos
2

:IF

sin:RF
sin:LO

NEMSVCO

NEMS

VCO

,       (4-1) 

where A demotes the amplitude of a signal as it arrives at the mixer, and ω is the 

frequency. 

  If a phase detector (mixer optimized to operate at saturated inputs) is used instead, the 

IF signal still has a DC component varying as cosϕ, but now it is independent of ANEMS 

and AVCO.  In either case the DC component of the IF signal can be used as an error 
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signal to lock to the frequency at which ϕ =90°.  When the PLL is locked to the 

resonance frequency, the average VCO output frequency equals the NEMS resonance 

frequency.   

The simple analysis and explanation above based on Fig. 4.1 is just the first-order key 

concept of the NEMS resonance phase detection and resonance frequency tracking.  A 

practical UHF NEMS-PLL system would appear like shown in Fig. 4.2 or involving even 

more components.  As shown, after the mixer, the IF signal is usually amplified by a 

low-noise amplifier (LNA) and the also processed by a low-pass filter (LPF) or band-pass 

filter (BPF) before it is fed back to the VCO as the control-voltage ‘error’ signal.  

Particularly, in the FM-PLL scheme, the ‘error’ signal is ‘carried’ by the FM signal and 

thus a BPF with an appropriate frequency window is required.   

 

Fig. 4.2  UHF NEMS detection embedded into low-noise phase-locked loop for real-time precise 
locking and tracking of NEMS resonance frequency. 

Shown in Fig. 4.3 is the balanced-bridge detection circuit used in this study.  It 

corresponds to the ‘UHF NEMS Detection’ block in Fig. 4.2.  This is an early improved 

version of the prototype bridge circuit [18], similar to the one used in [19] but with 

enhanced phase shift tuning and compensation, whereas still with lower resolution if 

compared to the best engineered bridge circuit for self-oscillation of UHF NEMS in 

Chapter 3.  Nevertheless, the application of the FM-PLL scheme compensates this to 

some extent and the phase detection from the FM-PLL scheme has already attained fairly 

good signals from the UHF resonances read out by using the circuit shown in Fig. 4.3.   
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Fig. 4.3  Schematic of the electromechanical resonances readout scheme, with a balanced electronic 
detection circuit specifically modified and optimized for UHF NEMS.  Inset (a): SEM image of a 
typical UHF SiC NEMS (top view, the etched undercut indicating that device is freely suspended).  
Inset (b): the parallel LRC tank circuit model for a magnetomotively-transduced NEMS.  The total 
impedance of the device includes the DC impedance RDC and the electromechanical impedance 
Zm(=Rm//(1/jωCm)//jωLm). 
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Fig. 4.4  Detected electromechanical resonances of pairs of UHF NEMS resonators from the bridge 
scheme.  (a) Resonances at 417.2MHz and 419.9MHz, respectively, both having Q≈1200.  The 
plotted signal is referred to the input of the preamplifier.  Inset: An SEM image of this ~420MHz 
NEMS resonator, with measured dimensions of L≈1.8μm, w≈150nm and t≈100nm.  (b) Resonances 
at 428MHz (Q≈2500) and 482MHz (Q≈2000), respectively.  Shown are the resonance curves as the 
driving RF power is increased.  Inset: SEM image showing a typical suspended UHF NEMS 
resonator device. 
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Fig. 4.5  Demonstration of temperature-programmed resonance frequency shifting and real-time 
frequency locking and tracking for UHF NEMS, (a) for the 420MHz device and (b) for the 411MHz 
device.   
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  The plots in Fig. 4.4 demonstrate some typical resonance data detected from several 

selected UHF NEMS devices by using the bridge detection scheme shown in Fig. 4.3.  

In Fig. 4.4 (a), the resonances are from a pair of devices both very close to 420MHz and 

with measured Q~1200.  The resonances have shown amplitude dependency on the 

magnetic field B when the RF driving power is fixed.  The shown data have been 

calibrated and converted into a voltage signal that is referred to the preamplifier, 

indicating that the level of the signal amplitude is roughly in the 10nVolt to 1μVolt 

range.   

  In Fig. 4.4 (b), the resonances are at 428MHz and 482MHz and with Q≈2500 and 

Q≈2000 respectively.  In this set of data, the magnetic field is fixed at B=6T, and the RF 

driving power is swept and it can be clearly seen that both resonators are approaching 

their nonlinear regime with increasing RF drive.  It is also observed that the 482MHz 

device has a substantially higher onset of nonlinearity than the 428MHz device does, 

which confirms the scaling of the device dynamic range with its dimensions [20].  

Intuitively, the 482MHz device is short than the 428MHz (with same width and thickness) 

and thus is stiffer, therefore implying a high onset of nonlinearity.  Note in each of the 

plots in Fig. 4.4, after the background response is subtracted, the resonances in a pair are 

exactly out-of-phase, as expected according to the nature of the bridge circuit.  Also 

note that here in this un-optimized balancing and nulling, the obtained RSBR (in dB) is 

much lower than that attainable by the high-resolution bridge in making the NEMS 

oscillator.   

  Once the UHF NEMS resonance is detected by using the network analyzer, then the 

detecting circuit can be incorporated in the PLL system.  The network analyzer is 

replaced by the VCO to drive device at the device resonance frequency.  As illustrated 

in Fig. 4.1 and Fig. 4.2, usually one can perform open-loop testing to optimize loop 

parameters and then move on to closed-loop mode.  Once the closed-loop is locked, the 
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VCO starts to track the resonance frequency.  An interesting, simple but convincing 

experiment we usually do is to have PLL track the temperature-programmed resonance 

frequency shifting.  As we alter the device temperature, the resonance frequency shifts 

(for our SiC devices, the resonance frequency temperature coefficient is negative), and 

the PLL tracks this change and follows the temperature change very well, as shown in Fig. 

4.5.  This real-time tracking of frequency shifting steps, translated from heating pulses, 

is essentially similar to the PLL tracking the frequency shifting steps caused by added 

mass pulses (e.g., shutter gated mass loading effect as illustrated in [10, 11]).   

4.3  Frequency Stability of UHF NEMS Resonators in PLL 

In the present study, we focus on examining the noise floor or the sensitivity of 

generations of UHF NEMS devices.  We do not perform mass accretion experiments for 

each particular device.  Instead, we embed each detected UHF NEMS resonance into the 

PLL to study the frequency stability at the conditions where the temperature is stabilized 

and there is no mass loading.  So the sources for the frequency instability are either 

intrinsic noise processes in the UHF NEMS device itself, or thermal fluctuations of the 

environment and the electrical interfaces to the device.   

 

 

Fig. 4.6  Scheme and setup for measuring the NEMS resonator frequency stability with the 
NEMS-PLL system.   
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Fig. 4.7  Measured Allan deviation as a function of averaging time for a family of UHF NEMS 
resonators. 

  In the UHF NEMS-PLL system, the frequency stability is measured with the scheme 

shown in Fig. 4.6, by using a counter to record the instantaneous output driving 

frequency of the VCO.  This is different from the frequency stability measurement in 

the self-oscillating system where one only needs to record and analyze the oscillator 

output frequency.  As shown in Fig. 4.6, a precise universal counter (Agilent 53132A) is 

used to carry out this time-domain measurement, and the frequency stability is evaluated 

by the statistics of the measurement ensemble.  As discussed in Chapter 2 and 3, with 

this we measure the Allan deviation [21,22], the widely used criterion for frequency 

stability.  For a finite measurement ensemble with N samples, the Allan deviation is 
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where f0 is the resonance frequency, and if  is the measured (averaged) frequency in the 

ith time interval.  As plotted in Fig. 4.7, the measured Allan deviation as a function of 

averaging time, for several UHF NEMS resonators, shows the characteristics of a typical 

crystal resonator, with a similar tendency as that of a quartz crystal resonator.  The data 

show that the short-term frequency stability of the NEMS resonators is optimized to be in 

the 10-8 to 10-7 range, with minimum Allan deviation values at about τ ≈5sec averaging 

time for all these resonators.   

4.4  Phase Noise of UHF NEMS Resonators in PLL 

 

Fig. 4.8  Scheme and setup of measuring the phase noise of UHF NEMS resonators in the 
NEMS-PLL system. 
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Fig. 4.9  Phase noise performance of generations of UHF NEMS resonators.  Shown are the 
measured phase noise spectra versus offset frequency from the carrier. 

In general, the phase noise performance of a resonator (crystal, MEMS or NEMS) can be 

characterized either in a self-oscillating mode, or by phase-locking a much more stable 

and lower-noise source to the resonance to perform phase detection to measure the noise 

spectrum.  In the former oscillator mode, a special phase noise analyzer can be used to 

directly measure the phase noise spectrum (as the one presented in Chapter 3); in the 

latter PLL mode, a more commonly available (less expensive) noise spectrum analyzer 

can be used to measure the noise in the phase detection signal and with this the phase 

noise information can be retrieved. 

  In this study, the phase noise spectrum is measured using the scheme shown in Fig. 4.8 

with the UHF NEMS-PLL system.  The noise spectrum of the control voltage of the 

VCO, SV(ω) is directly measured by a dynamic signal analyzer (HP 35665A), at the port 

where the error signal is fed back to the VCO as control voltage.  Hence the frequency 

noise spectrum of the VCO output induced by the VCO input control voltage noise is 

( ) ( )ωω V
2SKS Vf = ,           (4-3) 

where KV [Hz/volt] is the gain of the VCO in the frequency modulation mode.  Thus the 

equivalent phase noise spectrum is [22] 

( ) ( )ω
ω

ωφ fSS 2
1

= ,           (4-4) 

where ω=2πf is the offset frequency in radius (with f in Hz).  The measured phase noise 

as a function of offset frequency from the carrier is collected in Fig. 4.9 for several 

NEMS resonators.  It is observed that in the range of 0.01Hz to 0.1Hz, the phase noise 

has 1/f 3 behavior while in the range of 0.1Hz to 10Hz, it approximately follows 1/f 2 for 

all this family of UHF NEMS resonators.  The far-from-carrier roll-off (~25Hz) is 
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attributed to the measurement system time constant.  Analyses show that the ultimate 

phase noise performance is limited by thermomechanical noise of the device itself; while 

here in the practical system, as there is a mismatch between the noise floor of the 

preamplifier and that of the NEMS device, the real phase noise is currently limited by the 

thermal noise of the preamp plus other noise processes in the measurement electronic 

system.  If a specialized phase noise analyzer would be available to directly and 

carefully calibrate the phase noise performance of the NEMS-PLL system, it could be 

connected to the output of the VCO and this should yield the same results as obtained 

here. 

4.5  Roadmaps of UHF NEMS Resonators and Performance 

Based on the foregoing measurements and milestones achieved, we have been able to 

build roadmaps of the characteristics and performance of these generations of UHF 

NEMS devices.  These roadmaps are very important and meaningful.  They also have a 

lot of implications for the achievable scaling capabilities of UHF NEMS, and on the 

routes toward the ultimate goals of UHF-NEMS-based sensing and communication 

applications.   

  For the family of UHF NEMS devices operating in the range of 300~500MHz, all 

characterized in the PLL system with resonances read out by bridge scheme, their basic 

specs (device dimensions, mass, frequency, Q), achieved dynamic range (DR) and 

measured frequency stability performance (Allan deviation) are listed in Table 4-1. 

  We carefully examine the noise floor and onset of nonlinearity of each of these devices 

to estimate their ideal, intrinsic dynamic ranges. Since in these measurements the readout 

preamplifier noise is not matched to the intrinsic noise floor of the device, the practical 

dynamic range is compromised.  Fig. 4.10 shows the scaling of both the intrinsic and 

achievable dynamic ranges of UHF devices we have made so far.  In the analyses, some 
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of the UHF devices demonstrated in pushing the 1GHz operating frequency barrier are 

also included [23].  For these devices, the dimensions, resonance frequency and Q’s 

have been measured but their noise floor and dynamic ranges have not been examined. 

Table 4-2 presents the roadmaps of the noise floor and dynamic range for the UHF 

NEMS devices working in the range of 400MHz~1GHz. 
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Fig. 4.10  Ideally intrinsic dynamic range and practically achievable dynamic range specifications of 
the UHF NEMS resonators. 

  As illustrated in Chapter 2, the power handling capability of a resonator device is 

another very important metric that is especially crucial for communication and signal 

processing applications.  So we have also built an extended roadmap of the power 

handling for all the VHF/UHF/microwave NEMS resonator devices we have so far 

demonstrated, as shown in Table 4-3.  For VHF NEMS resonators (with f0 100MHz or 

so), typically we have the RF power sent to the devices in nanowatt (nW) range, about or 

over 90% of which is dissipated as heat on the DC resistance for the devices; the power 

goes to the mechanical resonance, thus the power handling of the NEMS resonator, is in 
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picowatt (pW) range (note that Q always plays a role in determining the exact numbers, 

as the Q trades off with power handling).  As the rules of thumb, we have: 

  (i) For 10−100MHz VHF NEMS resonators, Pdrive,max: 0.1−10nW range; and power 

handling PC: 1−100pW range. 

  (ii) For 300MHz−1GHz UHF NEMS resonators, Pdrive,max: 0.1−100μW range; and 

power handling PC: 0.1−100nW range. 

  These typical numbers are confirmed by the typical total driving power level seen in 

our experiments, and the mechanical domain calculations and the estimations based on 

the circuit model are of the same orders of magnitudes. 

  Note all the calculations and analyses of the specifications and metrics of UHF NEMS 

are based on the theoretical foundations and formulae discussed in Chapter 2. 
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Table 4-1  UHF NEMS resonator devices specs and performance 

NEMS Device Dimensions Resonance 
Frequency 

(MHz) L (μm) w (nm) t (nm) 
Device Mass 
(fg, 10-15g) 

Meff
(fg) Q DR 

(dB) 
 σA

(τ=1sec) 

Mass 
Sensitivity 

(1zg=10-21g) 
295 2.65 180 80 160.2 118 ~3000 80 4.7×10-8 15 zg 
420 1.8 150 100 111.1 82 ~1200 90 3.1×10-7 67 zg 
411 1.7 120 80 72.3 53 ~2600 85 6.6×10-8 10 zg 
428 1.65 120 80 75.5 54 ~2500 90 2.5×10-8 4 zg 
482 1.55 120 80 70.9 52 ~2000 98 2.1×10-8 3 zg 

 

Table 4-2  Dynamic range specs of UHF NEMS resonators 

Resonance 
Frequency 

(MHz) 

L 
(μm) 

w 
(nm) 

t 
(nm) 

Device 
Mass 
(fg) 

RF 
Q 

Intrinsic 
Noise Floor 

Displacement 
(fm) 

Intrinsic Noise 
Floor 

(Voltage, pV) 

Intrinsic 
Noise 
Floor 
(dBm) 

Intrinsic 
Dynamic 

Range 
(dB) 

Achieved 
Dynamic Range 
in Measurements 

(dB) 
428 1.65 120 80 75.5 2500 1.44 51.0 -192 120 90 
482 1.55 120 80 70.9 2000 1.11 41.7 -197 128 98 
339 1.6 140 80 71.3 3600 2.52 68.7 -190 109 N.A. 
357 1.55 160 80 78.9 3000 2.02 56.2 -192 112 N.A. 
480 1.32 140 80 61.3 1600 1.07 34.2 -196 120 N.A. 
488 1.31 150 80 60.8 1600 1.05 33.8 -196 120 N.A. 
590 1.6 140 80 71.2 1700 0.75 35.8 -196 132 N.A. 
712 1.55 160 80 78.9 900 0.39 21.8 -200 137 N.A. 
1014 1.11 120 80 44.2 500 0.23 13.0 -205 142 N.A. 
1029 1.09 120 80 43.4 500 0.23 12.8 -205 142 N.A. 

Thermal noise of preamp: -177dBm 
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Table 4-3  Power handling specs of 3C-SiC VHF/UHF NEMS resonators 

Resonance 
Frequency 

(MHz) 

L 
(μm) 

w 
(nm) 

t 
(nm) 

Device 
Mass 
(fg) 

Effective 
Mass 
Meff 
(fg) 

Measured 
Q 

Critical 
Displacement 
(amplitude) 

aC (nm) 

Effective 
Stiffness 
keff (N/m) 

Resonator 
Mechanical 
Energy at 

the Critical 
Amplitude 

(fJ) 

Power Handling 
 

124 2.5 200 80 177.2 130.2 1300 1.47 79.0 0.085 50.9 pW 
133 2.35 150 80 124.9 91.8 5000 0.71 64.1 0.016 2.7 pW 
190 2.35 150 100 145.0 106.6 5200 0.99 151.9 0.075 17.2 pW 

199.6 3.1 180 100 229.5 168.7 7500 1.51 265.3 0.30 50.6 pW 
240.5 1.8 150 100 111.1 81.6 1500 1.37 186.4 0.18 176.8 pW 
295.4 2.66 170 80 160.2 117.8 3000 2.60 405.7 1.37 850.2 pW 
420 1.8 150 100 111.1 81.6 1200 2.68 568.4 2.04 4.5 nW 
395 1.75 120 80 74.4 54.7 2600 1.65 336.8 0.46 455.3 pW 

411.4 1.7 120 80 72.3 53.1 2600 1.62 355.0 0.47 482.7 pW 
428 1.65 120 80 75.5 55.5 2500 1.66 401.3 0.55 644.4 pW 
482 1.55 120 80 70.9 52.1 2000 1.77 478.0 0.75 1.1 nW 

           
339 1.6 140 80 71.3 52.4 3600 0.99 237.8 0.12 68.5 pW 
357 1.55 160 80 78.9 58.0 3000 1.07 291.8 0.17 124.4 pW 
480 1.32 140 80 61.3 45.1 1600 1.43 409.8 0.42 785.6 pW 
488 1.31 150 80 60.8 44.7 1600 1.43 420.1 0.43 821.0 pW 
590 1.6 140 80 71.2 52.3 1700 2.50 719.1 2.25 4.9 nW 
712 1.55 160 80 78.9 58.0 900 3.89 1160.6 8.78 43.6 nW 
1014 1.11 120 80 44.2 32.5 500 3.81 1318.7 9.58 122.0 nW 
1029 1.09 120 80 43.4 31.9 500 3.73 1333.4 9.27 119.9 nW 

 

Black: tested by the author (the work on the 124MHz, 133MHz, 190MHz in collaboration with Jack) 

Blue: data from X.M.H. Huang’s thesis work for resonance frequencies, dimensions and Q’s. 
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  The UHF NEMS resonators roadmaps are encouraging and stimulating.  For example, 

as shown in Tables 4-1 and 4-2, for the close to 500MHz devices, we have 

experimentally achieved ~100dB dynamic range and the excellent frequency fluctuation 

noise floor (Allan deviation) leads to a mass sensitivity of 3zg.  This manifests that 

probably the most intriguing promise of these UHF NEMS-PLL systems is that the 

measured frequency stability is translated into unprecedented mass sensitivity if the 

devices are used as inertial mass sensors, based on the analyses in [9].  For all the 

devices measured with the PLL scheme, the mass sensitivity values go deep into the 

zeptogram (10-21g) scale.  In fact, given 1zg≈0.6kDalton, the demonstrated mass 

sensitivity indicates that we have already had the capability of weighing biomolecules 

with mass in the 10-100kDalton ranges, and distinguishing some of them with fine 

enough resolution.  Further, this suggests that single-molecule mass detection with 

single-Dalton sensitivity becomes possible and applicable with UHF NEMS. 

  It is also clearly verified by the roadmaps that frequency stability and thus the overall 

mass sensing performance relies on a combination of high frequency and high Q.  

Therefore, scaling up operating frequency and simultaneously retaining high Q remains a 

great challenge for NEMS mass sensor engineering.  Besides, we note that to fully 

understand the origin and mechanism of the deteriorating long-term stability (long-term 

drifting) shown in Fig. 4.7, and to develop techniques for optimizing both short-term and 

long-term stability, study upon various possible drifting and aging effects in the system is 

needed.  Realistically, long-term drifting mechanisms may be unavoidable as they 

persist in many other conventional time bases, but it would be still very valuable if the 

Allan deviation can be engineered so that the σA∼1/√τ and/or flat regions are wide 

enough to cover the averaging time range of interest.  Or equivalently, the noise is 

thermal noise or 1/f noise limited and the knee point between 1/f noise and 1/f 2 noise is 

really low at offset frequency, i.e., really close to carrier. 
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4.6  From UHF NEMS to Local Oscillators for CSAC 

It is interesting and enlightening to evaluate the performance of these UHF NEMS 

resonators in the context of frequency control, besides that of the mass sensing.  In fact, 

considerable efforts with UHF NEMS resonators have been dedicated to strive for their 

best performances to meet the stringent requirements of local oscillators (LO) for 

microfabricated chip-scale atomic clocks (CSAC) [24], in which the physics cell can be 

based on, for examples, Cs (9.2GHz), Rb87 (6.8GHz), or Rb85 (3.0GHz).  The LO 

frequency stability and phase noise performance requirements have been analyzed 

preliminarily by John Kitching [25].  Here we only highlight the comparisons between 

the performance of our UHF NEMS resonators and the CSAC LO requirements, as 

shown in Fig. 4.11 for frequency stability (Allan deviation) and Fig. 4.12 for phase noise, 

respectively.  The phase noise measured from the UHF NEMS oscillator (as detailed in 

Chapter 3) is also included in Fig. 4.12 for comparison. 
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Fig. 4.12  Measured phase noise of UHF NEMS resonators and oscillator vis-à-vis LO requirements 
for Rb87 6.8GHz CSAC. 

  It is shown that in the measurable regimes, the UHF NEMS resonators’ performance 

meet or approach the CSAC LO requirements.  We note that a linear scaling from 

~300-500MHz to 6.8GHz is applied in the comparison.  In reality, however, it is not 

guaranteed to achieve the same specifications as the frequency is scaled and converted by 

multiplication utilizing frequency synthesizers. 

Moreover, by combining phase noise performance with power handling capabilities of 

these UHF NEMS resonators (as shown in Table 4-3), we have experienced stringent 

challenges in dealing with the trade-offs between power handling, Q, and operating 

frequency.  In order to pursue microwatt (μW) power handling with UHF and high-Q 

resonators for high-profile low-noise LO applications, it seems better to abandon the 

beam-structures and explore with much stiffer geometries and modes.  For ultrasensitive 

mass detection, beam-structured resonators are still preferred as they can achieve a better 

balance in providing both excellent responsivity and stability.   
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4.7  NEMS Resonator Arrays with Phase-Locked Loops 

In practice of NEMS resonators for sensing applications, the scenario may be much more 

complicated than that in the lab settings for initial demonstrations.  For physical and 

biological sensing with NEMS resonators, besides sensitivity, often selectivity and 

efficiency are also very important.  For NEMS resonant mass sensing, the capturing 

efficiency can be very low due to the small areas of NEMS resonators.  In general, one 

could alleviate this issue by pre-concentrating the species to be detected, or by focusing 

the incoming flux upon the responsive devices.  On the other hand, implementation of 

arrays of NEMS devices can be a solution.   

 

Fig. 4.13  Schematic and design of NEMS-PLL array for real-time multiplexing sensing. 

Shown in Fig. 4.13 is the schematic illustration of a system of NEMS-PLL array.  

Here for each single device in the array of NEMS resonators, a PLL is needed to make it 

possible for the array to perform parallel, multiplexing sensing.  Eventually this should 

be implemented by interfacing NEMS resonator arrays with integrated circuits on the 

same chip.  This could be very challenging for NEMS engineering and the uniformity of 
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the NEMS devices and the components in the PLLs should be carefully addressed.  

Moreover, as compared to the NEMS oscillator arrays discussed in Chapter 3, here for 

each set of NEMS-PLL, a low-noise VCO, and frequency conversion element such as the 

mixer is required, which also draws special attention for the design of feedback and 

control circuitry.   

4.8  Chapter Summary 

In summary, in the study presented in this chapter, we have demonstrated generations of 

UHF SiC doubly-clamped NEMS resonators.  The successful integration of a low-noise 

phase-locked loop with these resonators has been employed to directly characterize the 

frequency stability and phase noise performance of the NEMS.  Roadmaps of Allan 

deviation and phase noise for 300~500MHz UHF NEMS are built.  The measured 

frequency stability is translated into unprecedented mass sensitivity and the data show 

that ultrasensitive mass detection based on UHF NEMS resonators is intriguing and very 

promising for approaching single-Dalton sensitivity.  The unique NEMS-PLL 

integration allows for real-time, low-noise detection of miniscule mass loading and 

fluctuation upon NEMS devices.  The roadmaps imply that high-frequency and high-Q 

engineering is crucial for both sensitive detection and low phase noise, stable oscillator 

applications.   
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Chapter 5 
 
Dissipation in Ultra-High Frequency 
Single-Crystal SiC Nanomechanical 
Resonators 
 
 

Dissipation is an important issue for virtually all mechanical resonant 

devices.  Understanding and controlling dissipation in MEMS and NEMS 

resonators are very intriguing.  It is of particular significance for high 

frequency NEMS resonators, and the higher the frequency the more acute 

the dissipation issue.  This chapter is focused on experimental study of 

dissipation in ultra-high frequency (UHF) devices.  The energy dissipation 

Q-1 (where Q is the quality factor) and resonance frequency characteristics of 

single-crystal 3C-SiC UHF nanomechanical resonators are measured, for a 

family of UHF resonators with resonance frequencies of 295MHz, 395MHz, 

411MHz, 420MHz, 428MHz, and 482MHz.  A temperature dependence of 

dissipation, Q-1 ∝T 0.3 has been identified in these 3C-SiC devices.  Possible 

mechanisms that contribute to dissipation in typical doubly-clamped beam 

UHF resonators are analyzed.  Device size and dimensional effects on the 

dissipation are also examined.  Clamping losses are found to be particularly 

important in these UHF resonators.  The temperature dependence of 

resonance frequency is also investigated, and an average frequency 

temperature coefficient of about −45ppm/K is found in T=20−100K range. 
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5.1  Energy Dissipation in Mechanical Resonators 

As briefly introduced in Chapter 2, the quality factor (Q) of a mechanical resonator is a 

measure of the device’s energy storage capability.  Every realistic mechanical resonator 

dissipates energy and requires pumping in power to sustain its operation.  High Q’s or 

small level of energy dissipation implies many important merits such as narrow 

resonance linewidth, low noise and high sensitivity (resolution).  In fact, pursuing high 

or even ultra-high Q’s has a quite long history [1] and it is cliché to stress its importance.   

  From the application point of view, generally all high Q mechanical resonators can be 

used as sensitive probes for studying a variety of physical phenomena and systems.  

Representative examples of such applications include single-crystal silicon resonators 

with Q~104−108 for measuring mechanical properties of physical systems [2], and quartz 

and sapphire resonators with Q~109 for gravitational wave detections [1].  Both of these 

are truly macroscopic (typical dimension >1cm) or even bulky mechanical resonators.  

Besides sensing and probing, high-Q crystal resonators have also established their roles 

in the distinct application field of frequency control and standards, for their high stability 

and spectral purity, as addressed in Chapter 3.  From the standpoint of fundamentals, 

understanding energy loss mechanisms on its own poses wealthy interesting problems, 

such as internal friction and thermoelastic effects in solids on which Zener’s theory was 

developed as early as dated in 1930’s [3].   

  The challenges and difficulties of pursuing ultra-high Q’s are due to the fact that there 

can be many energy loss processes that may be system dependent, and a lot of them are 

not well understood.  This is especially true for various types of the emerging MEMS 

and NEMS resonators.  Energy loss issues persist in such systems and sometimes the 

measured Q’s could not be quantitatively or even qualitatively explained by existing 

theories and models.   
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  In principle, in experimental studies one can approach the problems by isolating 

intrinsic dissipation processes and extrinsic losses and damping effects and examining 

them separately with specific designs and controls, such as some early studies on 

thermoelastic internal friction [4] and gas damping [5] in micromachined Si resonators.   

  In theoretical aspects, however, heretofore there is not a comprehensive theory or 

general framework for predicting the Q’s and energy losses in MEMS and NEMS 

resonators with relatively large ranges of materials, dimensions and resonator types.  

Direct computer simulations of Q’s and dissipation processes are not routine yet, from 

atomistic (such as molecular dynamics and Monte Carlo methods) to continuous 

techniques (such as FEM); and the techniques we can employ in calculating Q’s are 

rather primitive.  Fundamentally, with size scaling, MEMS and NEMS resonators 

become truly mesoscopic systems and they are excellent objects for probing the 

dissipation origins.  In these systems, there may exist quite different energy loss 

mechanisms; or the same losses may become different in relative significance, as 

compared to the macroscopic cases.  Currently, it is still far from having satisfactory 

knowledge and control of the dissipation processes in these systems, despite many 

observations and analyses reported in this field.   

  For Q’s of shrinking mechanical resonators, it is interesting to see that Q decreases as 

the device volume (V) is decreased from macroscopic to nanoscale (e.g., linear dimension 

from about 0.1−10cm to about 100nm−1μm), with an approximate scaling relation of 

Q~V1/3, as summarized in [6].  Since V1/3 is of linear dimension scale, this implies an 

intuition that the Q is size dependent and deteriorates with increasing surface-to-volume 

ratio.  Focusing on NEMS resonators, beyond this intuitive understanding, it is desired 

to gain more rational understandings—we need to understand what are the dominant and 

important dissipation origins and mechanisms, and among which what can be engineered 

and what are fundamental.   
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Fig. 5.1  Quality factor versus resonance frequency, the trade-off, for devices made of various 
materials.  The materials used in making these HF/VHF/UHF devices include Si and SiC (both with 
metallization layers on the devices), GaAs and p++ Si [7,8].   

5.2  The Issue of Dissipation in UHF NEMS 

As discussed in the previous Chapters, high Q’s are of central importance for high 

frequency NEMS resonators in their applications ranging from novel force and mass 

sensors [9-13], to nanomechanical signal processing [14] and fundamental quantum 

measurements [9,15,16].  In most of these applications, operating at high frequencies is 

indispensable for NEMS to win over conventional devices (e.g., radio frequencies are 

required for signal processing, very-high or even ultra-high frequencies are required for 

ultra-sensitive mass detection and quantum measurements).  Hence materials having 

large modulus-to-density ratio (E/ρ) such as SiC [8,17] and diamond [18] have been used, 

and smaller devices have been aggressively pursued with top-down lithographical 

nanofabrication, and bottom-up nanowire [19] and nanotube [20].   
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Fig. 5.2  Quality factor versus resonance frequency for VHF/UHF SiC NEMS resonators.  The 
trade-off relationship is approximately Q~f -1.1.   

  On the other hand, however, we have already found, one disadvantage of frequency 

scaling is that the device Q decreases as the resonant frequency increases (i.e., as the 

device size has to be reduced to scale up the frequency) [7,8,21]—thus Q-engineering is 

crucial for retaining high Q while scaling up the frequency.  As shown in Fig. 5.1 and 

Fig. 5.2, measured Q’s from previous HF/VHF NEMS resonators, and more recent UHF 

ones, in various structural materials (e.g., metallized Si and SiC, and heavily-doped Si 

and GaAs, etc.), all clearly demonstrate this trade-off of comprised Q’s at higher 

frequencies for the same category of material and process.   

For the recently most popular and attractive bottom-up material—nanotubes, however, 

rather low Q (only ~80) is attained in the only high frequency nanotube resonator realized 

so far (55MHz) [20].  Moreover, recent study has shown that nanotube resonators 

inherently suffer from lower Q’s and multi-walled nanotube resonators have even larger 

dissipation because of their constitutive properties [22]—this will compromise the 
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potential applications of nanotube-based mechanical resonators; whereas with the latest 

breakthrough in growing large SiC crystals with ultra-high quality [23], SiC ascends 

towards probably the most promising and practical material for high-performance 

high-frequency NEMS thanks to its excellence in both electrical and mechanical 

properties.  This chapter presents the investigations of dissipation in monocrystalline 

3C-SiC UHF NEMS resonators.   

5.3  Experimental Details 

The monocrystalline 3C-SiC epitaxial layer is grown on monocrystalline silicon substrate 

by atmospheric pressure chemical vapor deposition (APCVD) [24], reinforced by newly 

developed surface roughness control and improvement techniques [25].  

Doubly-clamped beam resonator devices are fabricated with a process specifically 

suitable for UHF SiC NEMS [8,17].  Shown in Fig. 5.3 are SEM images of a typical 

UHF 3C-SiC resonator.  The doubly-clamped beam design simplifies understanding of 

device size and dimensional effects, and also minimizes the influence of complexities in, 

and variations from, the fabrication processes.  Metallization consisting of 10nm 

titanium (Ti) atop a 30nm aluminum (Al) layer is deposited onto the SiC structural 

material.  This enables patterning devices read out by magnetomotive excitation, and 

also detection [26] of the beam resonance from the in-plane flexural fundamental mode.  

The measured sheet resistance of the metallization film is 1.5Ω/□ at ~20K and 6.7Ω/□ at 

room temperature, with a proximately linear temperature dependency in this range.  The 

device samples are secured in high vacuum (≤10-7Torr) in a liquid He cryostat.  The 

sample temperature is monitored by a thermometer, and controlled by a resistive heater, 

both mounted on the gold-plated sample stage.  Feedback control of sample temperature 

is applied and for each measurement temperature fluctuation is limited to be within 1mK, 

to minimize the instantaneous resonant frequency variation due to the temperature 

fluctuation.   
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Fig. 5.3  Scanning electron micrographs of a typical single-crystal 3C-SiC UHF NEMS resonator.  
Main: Oblique view (scale bar: 1μm).  Inset: Top view (scale bar: 2μm).   

  Network analysis techniques for two-port systems are used to detect the transduced 

magnetomotive effect from the NEMS devices and to measure the resonant frequencies 

and quality factors.  Because the strength of the magnetomotive effect decreases as the 

frequency scales up and in the UHF band it is easily overwhelmed by the embedding and 

parasitic impedances of the system, it has been a challenge to attain large and clean 

resonance signals out of the electrical background.  With our recently developed 

techniques of background suppression for UHF NEMS over wide frequency spans [27], 

now resonance signals with very large signal-to-background ratios (also known as 

“resonance on-to-off ratios”, typically 5~10dB [27], as compared to previously typical 

values of ~0.1dB) are reliably attained and thus quality factors can be accurately 

extracted from the resonance signals free from competing or even dominant response due 

to embedding and parasitic impedances.  Alternatively, albeit less convenient, quality 

factors can also be measured by a direct time-domain damped ring-down process of the 

resonators, which has been calibrated and verified to attain <5% discrepancy for 

extracted Q’s as compared to those from fitting resonance curves in the network analysis 
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method [28].  In the present work, network analysis with elaborately minimized 

background response ensures better confidence for accurate extraction of Q’s.   
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Fig. 5.4  Resonance signal of a 428MHz NEMS resonator, at various magnetic field conditions, as 
measured by a microwave network analyzer, utilizing detailed balancing and nulling techniques with a 
bridge circuitry scheme.  Inset (a): The magnetomotive damping effect.  Inset (b): A typical UHF 
resonance signal over a 10MHz wide frequency span. 

  Fig. 5.4 shows the measured resonance signal of the 428MHz device, as the magnetic 

field B is ramped up from 0T to 8T, with the background response signal at 0T subtracted.  

At B=8T, the signal-to-background ratio is 8dB at the resonance peak.  The right-hand 

side inset of Fig. 5.4 shows the resonance signal referred to the input of the preamplifier, 

in which both the background signal and the resonance are shown in linear scale (in 

μVolts, 8dB at peak if converted into dB, exactly corresponding to the dB plot in Fig. 5.4; 

but here in the linear scale plot the absolute level of the flat background, ~2.25μV, i.e., 

-100dBm, is clearly indicated), and a fit based on the Lorentzian approximation of the 

power signal perfectly matches the resonance data in a wide span of 10MHz.   
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  Fig. 5.5 shows the measured dissipation as a function of temperature for the 3C-SiC 

428MHz and 482MHz NEMS resonator devices.  The radio frequency (RF) drive power, 

the magnetic field and the electronic detection system settings are kept the same in all 

these measurements, leaving temperature the only variable.  Magnetic field B=6T with 

enough RF power (-33dBm) is calibrated and used to attain large enough resonance 

signals (approaching the top regime of the dynamic range) for accurate extraction of Q’s 

in all these temperature-dependent measurements.  As shown in Fig. 5.5, the measured 

dissipation increases with increasing temperature, with a temperature dependency of 

about Q-1∝T0.3 for both devices.  It should be pointed out that this dissipation 

temperature-dependency phenomenon is not unique for these SiC resonators.  In Table 

5-1 we list seemingly similar temperature dependency reported for micro- and 

nanomechanical resonators made of Si, GaAs, diamond and carbon nanotube, with none 

of their temperature dependencies clearly understood.  Because dissipation in resonant 

devices is complicated and associated with various energy loss mechanisms, how to 

understand the data requires examinations of all possible dissipation processes.  

Assuming that the dissipation from different origins is additive and uncorrelated, the 

possible important mechanisms that may contribute to the measured dissipation include 

the 3C-SiC NEMS structure layer’s intrinsic dissipation 1
0
−Q , magnetomotive damping 

1−
magQ , thermoelastic damping 1−

tedQ , clamping losses 1−
clampQ , metallization layer 

dissipation 1−
metalQ , surface loss 1−

surfQ , etc., 

⋅⋅⋅+++++=
surfmetalclamptedmag QQQQQQQ
1111111

0

     (5-1) 

We neglect the air viscous damping effect since all our measurements are performed in 

UHV condition.  We now explore all these possible mechanisms to find out the 

implications of these data.   
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Fig. 5.5  Measured dissipation as a function of temperature for the selected 428MHz and 482MHz 
NEMS resonators.  The dashed lines show the Q-1∝T 0.3 approximation to guide the eyes.  Inset: 
Theoretical estimation of maximum possible thermoelastic dissipation as a function of temperature. 
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Table 5-1  Temperature dependency of Q-1 in various micro- & nanomechanical resonators. 

Material L (μm) w (nm) t (nm) Resonant Frequency 
Temperature 
Dependency 

Method 

3C-SiC 
(this work) 

1.55, 1.65 120 80 
Flexural, in-plane, 
428MHz, 482MHz 

Q-1~T 0.3 
(20~85K) 

Si [21] 5~25 1000 200~360 
Flexural, out-of-plane, 
12.4MHz, 4.7MHz 

Q-1~T 0.3 
(4~10K) 

GaAs [21] 6~25 400~2000 ~800 

Torsional, 0.62, 1.02, 
1.28, 2.75MHz 
Flexural, out-of-plane, 
13MHz 

Q-1~T 0.25 
(4~40K) 

Diamond [28] 
2.5, 3, 4, 
and 8 

80 40 
Flexural, in-plane, 
13.7MHz, 55.1MHz, 
110.1MHz, 157.3MHz 

Q-1~T 0.2 
(5~30K) 

Experimental 
 
Network 
Analysis 

Single-Walled 
Carbon 
Nanotube [22] 

0.003μm 
(3nm) 

d=0.35nm d=0.35nm Flexural, 300GHz 
Q-1~T 0.36 
(50mK~293K) 

Molecular 
dynamics 
simulation of 
ring-down 
process 
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5.4  Dissipation Mechanisms and Contributions 

5.4.1  Magnetomotive Damping Effect 

The family of resonance curves in Fig. 5.4 clearly shows an effective Q decrease with 

increasing magnetic field (as the resonance getting broadened).  The measured 

dissipation Q-1 versus magnetic field is shown in the left-hand side inset of Fig. 5.4 with 

the quadratic fit in a dashed line (there is no data point below B=1T because for UHF SiC 

NEMS, the device is short and stiff and thus for B<1T the resonance is too small to be 

reliably extracted).  This magnetomotive damping effect originates from the fact that the 

electromotive force (EMF) voltage generated by the vibrating NEMS device in the 

magnetic field creates a current as the device is in a closed circuit (with the resistive 

elements of both the device itself and the measurement system), and in the magnetic field 

this current induces force that intends to oppose or damp the resonating device.  This 

effect is modeled by a loaded Q due to the impedances forming a closed circuit with the 

emf voltage in the detection system [26] 
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where Qdevice is the unloaded Q of the device itself; ( )mfLBQR devicem 0
22 2πη=  is the 

electromechanical resistance of the NEMS, with m the mass of the device and mode 

shape number η=0.5232 for the fundamental mode; and Zext (seen by the EMF voltage in 

its closed circuit) is the impedance in series to Rm, consisting of the DC resistance of the 

device, the impedance of the coaxial cable and the input impedance of the preamplifier.  

Shown in the left-hand side inset, the measured Q decreases by a factor of ~2.3 as from 

B=1T to 8T, and the fitting with eq. (5-2) leads to an estimation of the unloaded Q of 
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Qdevice≈2860 at ~20K, which is the highest Q achieved for doubly-clamped beam 

resonators operating in the >400MHz range.   

5.4.2  Thermoelastic Damping 

The thermoelastic damping effect is due to the fact that when the beam is deformed and is 

vibrating, the strain field is coupled to local temperature field and the mechanical 

vibration energy is dissipated through phonon relaxation processes into thermal energy.  

Detailed theory and modelling regarding the thermoelastic damping, particularly in 

doubly-clamped beam resonators, has been developed [29].  To explore how much 

dissipation is contributed by thermoelastic damping in SiC NEMS, the accurate 

estimation based on the theory then relies on trusty data of the thermal and mechanical 

properties of SiC NEMS at the temperatures of interest, which however are, thus far very 

scarce, as the thermal and elastic properties of epitaxial SiC films are still awaiting 

systemic investigation, especially at low dimensions (nanoscale thin films, and nanoscale 

beams and wires) and at low temperatures.  Empirically, here we estimate the upper 

limit of the thermoelastic damping in 3C-SiC based on the theory developed in [29] with 

the available thermal properties data at various temperatures: 
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where E, α, ρ, CP are the Young’s modulus, thermal expansion coefficient, mass density, 

and heat capacity (per unit mass), respectively.  Here ξ is a dimensional variable 

represents the relative magnitude of the characteristic size of the device (e.g., device 

width) versus the characteristic thermal relaxation length (e.g., phonon mean free path).  

The upper limit of thermoelastic damping, (1/Qted)max, independent of the device 

dimension, is assumed when the system is operating at ξ=2.225.  With the parameters 

shown in Table 5-2, the estimated (1/Qted)max is plotted in the inset of Fig. 5.5.  This 
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indicates the thermoelastic damping effect in our 3C-SiC NEMS devices is not strong and 

could be neglected (still more than 2 orders of magnitude smaller than the measured 

dissipation).   

Table 5-2  Properties of 3C-SiC for thermoelastic damping calculations*. 

Temperature 
(K) 

Heat Capacity 
(J/[g⋅K]) 

Heat Capacity 
(J/[m3⋅K]) 

Thermal Expansion Coefficient 
(10-6/K) 

5 1.21×10-5 34.503 0.01 
10 9.69×10-5 276.028 0.02 
20 7.75×10-4 2208.222 0.0267 
30 0.00262 7452.750 0.036 
40 0.00620 17665.778 0.048 
50 0.012 34503.472 0.060 
60 0.0210 59622 0.072 
70 0.0376 107160 0.084 
80 0.0628 178866 0.1 
90 0.0837 238488 0.12 
100 0.105 298110 0.14 
150 0.251 715464 0.4 
200 0.418 1192440 1.5 

*With density ρ = 2850kg/m3 and Young’s modulus E = 430GPa, which have achieved good agreement in 
reproducing the measured data (e.g., device resonant frequency) of generations of 3C-SiC NEMS devices. 
Heat capacity (per unit volume data calculated from per unit mass data) and thermal expansion data are 
from [30].   

This estimation is based on the conventional view that considers thermoelastic 

damping as a bulk effect and the estimation replies on the credibility of the available data 

on thermal and mechanical properties [30].  However, we must note that recently it has 

been reported that the size effect of Young’s modulus has been observed in micro- and 

nanoscale devices [31], and the heat capacity of a NEMS device (1D nanostructure) 

might also be quite different from that of a 3D bulk sample.  Hence, a clearly 

quantitative and conclusive understanding of the thermoelastic damping in NEMS 

devices would only be possible once reliable measurements are carried out to 

systematically characterize, and at the same time, theories are developed to explain and 
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reproduce, these thermal and mechanical properties.  Moreover, recent studies have 

shown that thermal conductivity (and hence thermal diffusivity) of nanoscale beam and 

wire structures (with cross-section dimension in the order of 10−100nm) can be more 

than 2−3 orders of magnitude smaller than the bulk values [32,33].  Therefore, for the 

same device, calculating ξ with bulk thermal diffusivity would lead to a large error in 

estimated dissipation—especially when the thermoelastic damping effect is strong (i.e., 

when the first-order estimation of (1/Qted)max from eq. (5-3) is not negligible, as ξ gives 

the multiplying factor to (1/Qted)max to determine the real amount of thermoelastic 

dissipation [29]).   

5.4.3  Clamping Losses 

Scaling 3C-SiC NEMS up to UHF range brings the doubly-clamped beam length down to 

only 1~2μm (e.g., for given epitaxial SiC thickness 80nm and lithography 

process-determined width of 120nm~150nm); thus intuitively it could be expected that 

the clamping losses would become important.  Theoretical analysis predicts that for 

in-plane flexural mode of beams doubly-clamped to semi-infinite supports, dissipation 

into the supports is ( )31 / LwQclamp β≈− , while the coefficient β is not readily modelled 

[34].  Our experimental data from generations of UHF NEMS achieve encouraging 

agreement with this prediction, as shown in Fig. 5.6 and with device characteristics listed 

in Table 5-3.  The close fit to ( )31 /~ LwQ−  not only indicates that the clamping losses 

do play an important role and increases with shrinking devices (scaling up frequency), 

but also suggests that the clamping losses portion ratio (or percentage) 11 / −−= QQclampη  is 

roughly the same in these devices.   

  To accurately predict clamping losses, detailed analysis and modelling of the 

coefficient β is desired, and we suggest not only the elastic properties of the device, but 

also the dimensions of the finite-size supports, as well as the fabrication details (e.g., 
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undercut below the supports generated by the etch in order to suspend the resonator) 

should be considered.  With Fig. 5.6 and Table 5-3, it is clearly seen that the offset 

between the two sets of data in Fig. 5.5 is due to the larger clamping losses in the 

482MHz device than that in the 428MHz device.   
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Fig. 5.6  Experimental results of dissipation in several generations of UHF NEMS resonators with 
dimensions and operating frequencies scaled, all measured under the same experimental conditions 
(the individual device characteristics are listed in Table 5-3).  The solid line is the approximate 
theoretical fit based on the theory of elastic energy transmission from the vibrating NEMS device to 
its clamping and supporting pads.   

 

Table 5-3  Effect of aspect ratio on the Q-1. 

Device Dimension Resonant 
Frequency (MHz) L (μm) w (nm) t (nm) 

Aspect Ratio 
(L/w) 

Measured 
Q-1 

295 2.65 170 80 15.65 3.33×10-4 
395 1.75 120 80 14.58 3.77×10-4 
411 1.7 120 80 14.17 3.85×10-4 
420 1.8 150 100 12.00 6.67×10-4 
428 1.65 120 80 13.75 4.00×10-4 
482 1.55 120 80 12.92 5.00×10-4 
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5.4.4  Dissipation due to the Metallization Layers 

The metallization layers (Ti atop Al) also contribute to the dissipation.  With the general 

definition of dissipation ( )WWQ π21 Δ=−  (W is the energy stored in the resonator and 

ΔW the dissipated energy per cycle) and the assumption that the energy stored and 

dissipated can be split into corresponding portions in the structural layer and 

metallization layers [25], for our flexural mode doubly-clamped beams, we obtain 
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in which ti, Ei are thickness, Young’s modulus of the layers, and Qi
-1 are the 

phenomenological dissipation in each layer, respectively.   

  The coefficients for the dissipation in metallization layers are very small, 0.0543 and 

0.0293, respectively.  With the measured dissipation in deposited submicron Al and Ti 

films from [36] (both having a plateau in the interested temperature range), the estimated 

dissipation in metallization layers is ~5×10-6 (as listed in Table 5-4), still ≤1% of the 

measured dissipation.   

Table 5-4  Parameters for calculating the dissipation due to metallization layers.   

Thickness 
(nm) 

Young’s Modulus 
(GPa) 

Qfilm
-1 

Calculated 
Metallization 

Dissipation Contribution 

Al 30 68 1.0×10-4 [36] 5.43×10-6 
Ti 10 110 2.0×10-4 [36] 5.86×10-6 

 

5.4.5  Surface Loss 

Surface loss is due to the fact that virtually all surface atoms can be treated as defect 

atoms that cause energy dissipation into the environment.  Surface stress, adsorbates and 
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crystal defects on the device surface all enhance the dissipation.  Exact theoretical 

analyses and models capturing the mesoscopic surface loss mechanisms are not yet 

established due the complicated and stochastic nature of the surface conditions and 

behavior.  Nonetheless, it is still very intuitive to expect larger dissipation (lower Q’s) 

when the device surface-to-volume ratio is increased.  Experiments show that for 

ultra-thin (t<<w) cantilevers, Q’s are roughly proportional to the device thickness (in the 

regime of surface loss dominant, when the cantilevers are long enough), which could be 

qualitatively explained by conventional macroscopic theory based on the concept of 

complex modulus (E=E1+iE2, where E2 is the dissipative part) [37, 38].   

  For our UHF NEMS devices of very short beams, as shown in Table 3, the 

surface-to-volume ratio ( ) ( )wttw +2  does not change much (or almost remains the 

same) as we keep a consistent fabrication process with relatively fixed w and t.  Thus, 

surface loss in these devices should be approximately the same, and the measured Q 

differences among these devices are still dominated by clamping losses.  To estimate or 

determine the absolute amount of surface loss, annealing and other surface treatment 

techniques could be applied to test how much dissipation can be reduced.   

The above analysis shows that the observed dissipation temperature dependency 

Q-1~T0.3 in the temperature range of interest should be attributed to the intrinsic 

dissipation in the 3C-SiC material itself.  Other important mechanisms superpose on this 

intrinsic dissipation, without changing the temperature dependency (e.g., clamping 

losses), or without showing evidence to be able to change the temperature dependency up 

to the observed magnitudes (e.g., thermoelastic damping).  In principle, an accurate 

model describing this temperature dependency could possibly be developed if the 

mesoscopic energy dissipation nature inside monocrystalline 3C-SiC, at the atomistic 

level, is systematically understood.  As shown in Table 5-1, the finding of the 

temperature dependent dissipation in 3C-SiC accumulates new evidence and data for this 
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intriguing fundamental open question.  Also, we note that in Fig. 5.5, there is no strong 

evidence for the so-called Debye peaks [29] usually believed to be associated with the 

motions of various defects and impurities, excitation and relaxation inside the resonator 

material.  This is probably because of the high quality of our monocrystalline 3C-SiC 

epilayer [25].   

 

5.5  Resonance Frequency Temperature Coefficient 
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Fig. 5.7  Measured resonance frequency as a function of temperature for selected 3C-SiC UHF 
NEMS resonators (at carefully controlled and stabilized temperatures).   

The dependence of resonance frequency upon temperature is measured and plotted in Fig. 

5.7.  As shown, the resonance frequency decreases as the temperature is increased.  A 

polynomial fit to the data shows that a quadratic dependence f=f0+β(T-T0)2 matches the 

heating-induced (T≥T0) frequency tuning data quite well, with β≈-320Hz/K2 for both data 
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traces of Fig. 5.7.  We attribute this primarily to the effect of thermal expansion:  The 

frequency changes as both the beam length and its tension are altered with temperature.  

The nonlinear temperature dependency results from the contributions of both the direct 

beam length change, LLff δδ 2~00 −  (with TLL δαδ ⋅= where α=α(T) is the thermal 

expansion coefficient as a function of temperature); and the thermally induced tensile 

stress change δσT in the beam, TTff σδσδ 2~00  (in large tension cases with 

222 3LEtT πσ >> ) and Tff δσδ ~00  (in small tension cases).   

The results imply that the tensile stress increases monotonically when the devices are 

cooled down from 85K to 20K.  Another observation is that the fractional frequency 

change does not show dependency on the device size (the two devices are different in 

length), and both devices have an average temperature coefficient of about -45ppm/K in 

the range of T=20−85K.  This effect, once calibrated over a wider temperature range, 

can be employed to study the basic properties of SiC material, and can be further 

engineered for sensing applications.   

 

5.6  Chapter Summary 

In this chapter, we have investigated the dissipation in single-crystal 3C-SiC 

nanomechanical resonators operating at ultra-high frequencies, to gain understanding and 

develop engineering solutions that make optimal trade-offs between scaling up resonance 

frequency and attaining high Q’s for UHF NEMS resonators.  It is found that the 

temperature dependence of the dissipation in the 3C-SiC NEMS resonators studied 

follows Q-1∝T α, with α≈0.3.  It is clear that in-depth theoretical models and analyses 

are needed to reveal the underlying microscopic mechanisms.  The magnetomotive 

damping effect can be appreciable, but it is relatively well understood and (to some 
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extent) controlled.  Thermoelastic dissipation is found to be negligible for the devices of 

this study.  The losses from metallization layers contribute ≤1% of the observed total 

dissipation.  However, a major source of the dissipation is clamping losses through the 

supports for these doubly-clamped beam UHF resonators.  The measured data show that 

the theoretical prediction Qclamp
-1∝(w/L)3 provides a rough but reasonable model for these 

clamping losses.  Verifying and understanding the dominant clamping losses can lead to 

new designs and optimization guidelines for UHF NEMS enabling attainment of high Q’s.  

Moreover, because SiC can be deposited both in polycrystalline form as well as in several 

single-crystal polytypes with excellent properties (including 3C-SiC, 6H-SiC, 4H-SiC 

and 2H-SiC), it represents a particularly promising material for NEMS applications.  

Future collective studies of dissipation in SiC NEMS with all these SiC variations would 

be beneficial.   

For future Q-engineering while scaling the frequency up, we propose and are exploring 

the following possibilities and promising solutions.   

(i) Geometric mechanical design and optimization:  By engineering and optimizing 

the anchoring, supports and vibrational modes (e.g., free-free beams, tuning-forks, disks 

with wine-glass and extensional modes), the clamping losses can be reduced or 

minimized.   

(ii) Processes engineering:  By developing suitable annealing process [39], 

high-temperature and high-vacuum encapsulation packaging process [40,41], surface loss, 

interfacial loss at inhomogeneous interfaces, metallization layer dissipation and 

thermoelastic damping are expected to be alleviated.   

(iii) Materials engineering:  The development of highly-doped conducting 

single-crystal materials, metallic single-crystal nanowires, very-low internal loss 
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metallization layers, can also be anticipated to reduce the surface and interfacial losses, 

the internal friction in metallization and the thermoelastic damping effects.   

(iv) Electrical design: In the electrical domain, engineering and development of the 

transduction schemes and circuit models are expected to create technologies in which the 

loaded-Q effects are minimized.   
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Chapter 6 
 
 
High-Performance Silicon Nanowire VHF 
Nanoelectromechanical Resonators 
 
 

Suspended, free-standing nanoscale structures and devices provide the 

platforms for today’s exploration with nanomechanics and NEMS.  Besides 

the top-down lithographically-defined devices discussed in the previous 

chapters, the bottom-up synthesis paradigm has also been pursued in 

producing interesting building blocks.  Bottom-up nanostructures have to 

face formidable challenges in assembling and integration even at the 

functional device level, not to mention integrated systems.  Particularly for 

Si nanowires (NWs), which have been in the spotlight of nanoelectronics, 

their potential for NEMS could have been exploited as well had it been 

possible for direct growth of suspended Si NW devices.  This chapter is 

focused on the demonstration of robust, versatile, VHF NEMS resonators 

with high performance, based on single-crystal Si NWs prepared by bottom-

up chemical synthesis.  The Si NWs are suspended doubly-clamped 

resonators as grown across lithographically-defined microtrenches by a 

controlled vapor-liquid-solid epitaxial growth process.  We show that both 

metallized Si NWs and pristine semiconducting piezoresistive Si NWs are 

excellent resonators, thus providing great capability for versatile signal 
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transduction schemes.  Metallized Si NW resonators operating at 200MHz 

with quality factor Q≈2000−2500, and pristine Si NW resonators at 215MHz 

with Q≈5750, have been demonstrated.  The Si NW’s piezoresistive effect has 

been employed for VHF resonance detection.  Frequency stabilities of these 

Si NWs, measured by real-time frequency tracking techniques, demonstrate 

that they are among the most responsive and sensitive resonant mass 

sensors to date, with mass sensitivity well into the 20~60 zeptogram range.  

The ease of fabrication and high-performance characteristics of these Si NW 

resonators make them attractive and promising for resonant sensing, signal 

processing and other applications, with single devices or arrays of Si NWs.    
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6.1  Si NWs: Nanoelectronic and Nanomechanical Building Blocks 

Silicon nanowires (Si NWs) have been emerging as interesting and promising building 

blocks for nanoscale electronics [1-4], electrically-based chemical and biological sensors 

[5-9], and thermoelectric devices [10], as evidenced by functional devices and 

rudimentary systems based upon Si NWs for such applications having been demonstrated 

and attracting considerable research interest.  These Si NWs are usually prepared with the 

bottom-up chemical synthesis techniques involving catalyzed chemical vapor deposition 

(CVD) processes, characterized by a vapor-liquid-solid growth (VLS) mechanism [11,12] 

to allow for the promotion of anisotropic crystal growth.  As one-dimensional 

nanostructures, they possess ever-shrinking diameters well down into the nanometer 

regime (typically in the 10~100nm range).  Compared to their top-down lithographically-

defined counterparts, these Si NWs have encountered great challenges in rational growth 

and process control, assembly, contacting and interconnection, addressing and 

registration, and integration, which must be addressed in order to fulfill their application 

potential.   

Considerable efforts have been made to understand the VLS growth process in more 

detail, specifically the diameter, the crystalline structure and their control parameters for 

more predictable and reliable growth of high-quality Si NWs [11-13].  Typically, for an 

individual Si-NW-based device, atomic force microscope (AFM) scanning is needed to 

locate the Si NW and then subsequent electron-beam lithography and metallization 

processes are need to make the electrical contacts and interconnects [1-6,8]; or, the Si 

NWs dispersion is cast onto the support structure to have Si NWs bridging the contacting 

leads in a statistical (by luck) manner [10].  Similar to the ancient idea of “floating logs 

on the river”, microfluidics techniques have been employed to help align and assemble Si 



 146

NWs from dispersions, to create Si NW networks and arrays of two-terminal Si NW 

devices [14-16], and these assembled networks and arrays have been demonstrated as 

functional electronic devices [14] and biological sensor arrays [7,9].   

Thus far advances with Si NWs have mainly been carried out with emphasis on the 

aforementioned electronic devices and electrical (field-effect transistor)-based sensors.  

Si is a proven excellent mechanical material well-established for micro- and nano-

electromechanical systems (MEMS and NEMS) [17-19], hence Si-NWs-based 

mechanical devices are highly expected to augment the nanomechanical devices toolbox 

for applications such as atomic-scale manipulation, robotics, actuation and sensing.  It is 

also of great interest and importance to investigate the mechanical properties of Si NWs, 

as unexpected mechanical properties may emerge due to the variations in growth-

process-dependent crystalline structures and dimensions, which may possibly result in 

geometric- and size-related effects.  However, research in the mechanical aspects of Si 

NWs has been lagged largely because of the difficulties in making free-standing, 

suspended devices, and in devising techniques to probe their mechanical properties and 

further develop their mechanical functionalities.  Recently, progress has been made in 

exploiting Si epitaxial growth in the preferred <111> directions to grow aligned, 

suspended Si NWs [20,21].  With careful control of their number density, length and 

diameter, as-grown suspended Si NW doubly-clamped beams and cantilevers have been 

realized [21].  This immediately makes it possible to study the mechanical properties of 

these Si NWs by static bending of the NWs using contact mode AFM tips [22-24].  In 

this chapter we present the demonstration of the Si-NWs-based NEMS resonators, 

operating in very-high frequency (VHF) regimes up to ~215MHz.  Based on 

comprehensive measurements and characterizations, we show that these Si NW 

resonators are robust for VHF and UHF operations; they are versatile for various 
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transduction schemes; and they have high quality factors (Q’s) and high frequency 

stability; and thus are excellent for ultrasensitive resonant nanosensors.   

6.2  Suspended Si NWs in Microtrenches 

Single-crystal Si NWs are grown to bridge across prefabricated microtrenches with (111) 

facing walls, by catalyzed epitaxial VLS growth in a CVD process using SiCl4 as the 

precursor, with the complete process detailed elsewhere [21].  In order to make as-grown 

Si NW resonator devices, arrays of microtrenches have been designed and patterned 

photolithographically to serve as both supporting and conducting pads for the devices, as 

shown in Fig. 6.1 (a) for the arrays (with columns and rows addressed), and (b) for the 

close-in with the scanning electron microscope (SEM) image of a typical Si NW-in-

microtrench device.  The density and size of the catalyst particles dispersed onto the 

facing (111) surfaces between microtrenches have been carefully regulated to control the 

density and diameter of the resulting Si NWs.  Thus the process reliably yields a single 

device across a microtrench for the majority of the units in the array, and with a few of 

microtrenches possibly bridged by two or more Si NWs, as shown in Fig. 6.1 (c), (d) and 

(e), respectively.   

Extending to both sides of the microtrench, the Si pads are heavily doped with boron, 

having conductivity of ~1Ω⋅μm (typical sheet resistance is R□~1Ω/□) and providing 

good electrical contact and conduction.  The resistances of the Si NWs have been 

measured by probing devices in the array.  The Si NW resistivities can range from 

~30Ω⋅μm to ~100Ω⋅μm, and are mainly determined by the doping and growth processes.  

The design of arrays of microtrenches as supporting and contacting pads for Si NWs 

growth allows probing and characterization of many Si NWs on the same chip, and also 
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makes it possible to simultaneously integrate multiple devices with signal transduction 

electronics.   
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Fig. 6.1  Si NWs nanomechanical resonators prepared by VLS epitaxial growth process.  (a) Design 
and pattern of arrays of microtrenches for Si NWs.  (b) A Si NW device bridging the microtrench. 
Epitaxial growth only occurs between the microtrenches.  On the top surface of the pads, the Si NWs 
grow in the conventional manner without direction control.  (c) A Si NW resonator device with length 
L≈6.75μm and average diameter d≈80nm (in this case the wire is slowly tapered as it grows), and 
large aspect ratio of ~85.  (d) and (e) Control of Si NWs density and distribution in the microtrenches 
can yield multiple or arrays of devices with the same length and nearly equivalent diameters.   

    After SEM inspection and characterization of the dimensions and surface morphology 

of the Si NWs-in-microtrenches and probing the device resistances, electrical connections 

(Al wire bonding) are made for selected devices to a high-frequency circuit board built on 

a sample stage.  The sample is then loaded and sealed into a radio-frequency/microwave-

compatible cryostat chamber, which is maintained at high vacuum and at low 
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temperatures for excitation of the resonators via magnetomotive transduction which is 

well-suited for VHF/UHF/microwave nanomechanical resonators [25].  We have 

controlled the microtrench width, thus the Si NW length, and the NW diameter to have 

control over the operating frequency of the Si NWs resonators, as the resonance 

frequency of a simple doubly-clamped wire resonator is proportional to diameter over 

length squared, d/L2 and to Young’s modulus-to-density ratio ρYE .  For pre-

experiment device design, the Young’s modulus of bulk material is used, and the 

frequency is only scaled by tailoring device dimensions. 

6.3  Metallized Si NWs as VHF Resonators 

VHF resonators are first realized with metallized Si NWs.  Because the Si NWs typically 

have intrinsic resistances in the ~1−10kΩ range and even in the ~10−100kΩ range, this 

poses a challenge to radio-frequency (RF), especially VHF (strictly 30−300MHz) 

resonance detection due to the large impedance mismatch with RF electronics (with 50Ω 

standard), therefore we metallize these devices for better impedance matching with RF 

measurement components.  Similar to typical VHF top-down nanomechanical resonators 

[25], metallization layers consisting of 5nm Ti atop 30nm Al have been deposited onto 

the Si NWs by either thermal or e-beam evaporation.  The samples are slightly tilted 

during metal deposition so that the inner walls of a microtrench are not continuously 

coated, while allowing the Si NW to be conformally metallized (as long as it is not very 

deep down into the microtrench), thus the Si NW remains the only electrical path 

bridging the microtrench.  Further probing characterizations are performed to verify that 

after metallization any two pads are electrically open unless bridged by one or more Si 

NWs.  Metallized Si NWs usually have resistances of about 70−120Ω at room 

temperature and are very close to 50Ω at low temperatures.  We employ the bridge circuit 

readout scheme [26] incorporating pairs of Si NWs to be able to directly start with 
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devices of f0∼200MHz in the more attractive VHF/UHF ranges.  Although single-device 

based one-port reflection detection could be used for up to 100~200MHz devices [26,27], 

the two-port bridge detection scheme is proven to be better, especially for ≥100MHz 

devices [25,26].   

Fig. 6.2 demonstrates the detected signals for a typical pair of metallized Si NWs.  One 

of the device has dimensions L=2.1μm, d=118nm (aspect ratio≈18), with detected 

resonance frequency ~188MHz and Q≈2500; the other device has L=2.25μm, d=142nm 

(aspect ratio≈16), with resonance frequency ~200MHz and Q≈2000.  As shown in Fig. 

6.2, for the fixed magnetic field (B) bias condition, as the RF drive power is increased, 

the resonance response amplitude increases and the response approaches the nonlinear 

regime.  At the fixed RF drive condition, the resonance response increases with enhanced 

B field, with the voltage signal amplitude having a B2 dependency, which is a confirmed 

characteristic of the magnetomotive transduction [25].  In these measurements we have 

achieved a dramatically large signal readout with a very high signal-to-background ratio 

of up to 12dB as shown in Fig. 6.2 (a) and (c), by employing the high-resolution bridge-

balancing and background-nulling techniques [28].   

Another observation is that the Q of the 188MHz device is higher than the 200MHz 

device, which is consistent with the well-known f0 versus Q trade-off [25].  Since the two 

devices have roughly the same aspect ratio, they may have clamping loss to roughly the 

same extent [29].  The lower Q of the 200MHz device may also be correlated to the 

influence of its backward growth (as shown in the inset of Fig. 6.2 (d)), which can be 

effectively viewed as a free-standing Si NW cantilever device sharing one anchoring 

point with the 200MHz Si NW, and thus may introduce extra mechanical dissipation.   
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Fig. 6.2  Metallized Si NWs as VHF NEMS resonators.  (a) and (b) are for the 187.8MHz device with 
drive RF power sweep and magnetic field sweep, respectively, with the magnetomotive transduction 
and a bridge detection scheme.  Inset in (b) is the SEM image of the device.  (c) and (d) are the drive 
RF power sweep and the magnetic field sweep, respectively, for the 199.7MHz device.  Inset in (d) is 
the device SEM image where the backward Si NWs growth is noticeable for this particular device.   

These initial trials with metallized up to 200MHz Si NW resonators have demonstrated 

that the Si NWs-in-microtrenches are robust resonators and their anchoring to both the 

trench walls is indeed reliably self-welded.  This verifies that the self-welded anchoring 

at both the clamping ends does provide sound mechanical rigidity, not only for static 

loads as shown in the AFM bending experiments [22], but also for the dynamic resonant 

motions at VHF, and moreover, for operation in their deep nonlinear regimes (which 

implies longitudinal tension applied to the anchors).  With their specifications listed in 

Table 6-1, the metallized Si NWs resonators have ultrasmall size and mass, excellent 
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operating frequencies and quite good Q’s, leading to high-performance characteristics as 

attractive as those of their state-of-the-art top-down counterparts.   

Furthermore, for fair comparisons, although the Si NWs diameters are controlled only 

in a statistical way as compared to top-down lithographically defined features, the main 

advantage of these as-grown suspended Si NWs is that the fabrication process is easier, 

faster and much less expensive, as no electron-beam lithography is needed.  Since there is 

no etch process required to suspend the devices, the undercut of the anchoring pads is 

also avoided, which in principle makes the double clamping more close to semi-infinite 

and would imply less dissipation through the anchors, as compared to the case where 

undercut of the anchors is inevitable in the surface nanomachined beam resonators.  On 

the other hand, the top-down method has paramount and relatively more precise control 

on the number and position of the devices and for multiple devices and arrays, thus 

realizing rational rather than random device layout.   

6.4  Pristine (Non-Metallized) Si NWs as VHF Resonators 

We further demonstrate VHF resonators with bare, pristine semiconducting Si NWs, i.e., 

without the aid of the metallization layers.  As these NWs have been doped during the 

growth process and are conducting already, albeit with high impedance (about 1~100kΩ 

from various growth), this challenges the effective detection at high frequencies 

(especially for >30MHz) due to large impedance mismatch and significant signal 

attenuation and reflection.  We carefully choose pairs of Si NWs with fairly closely 

matched resistance and embed them into the high-resolution bridge detection circuitry.   
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Fig. 6.3  VHF NEMS resonators based on high-impedance pristine Si NWs without metallization.  (a) 
and (b) Measured resonance from the 215.4MHz Si NW, with RF drive power sweep and magnetic 
field sweep, respectively.  Inset in (b) is the SEM image of the device.  (c) and (d) Resonance data 
from the 80.57MHz Si NWs, with RF drive power sweep and magnetic field sweep.  Inset in (d) is the 
device SEM image and again here the backward Si NWs growth is noticeable for this particular device.   

    Fig. 6.3 shows the measured data for a pair of such devices.  One device has 

dimensions L=1.69μm, d=81nm (aspect ratio≈21), and measured DC resistance of 

3.135kΩ, and resonance frequency of 215.415MHz with Q≈5750.  The other device has 

dimensions L=2.77μm, d=74nm (aspect ratio≈37.4), and DC resistance of 3.616kΩ, and 

measured resonance frequency of 80.57MHz with Q≈13100.  As shown in Fig. 6.3, both 

devices have demonstrated approaching-nonlinearity with an increasing RF drive power 

sweep, and resonance response dependence on the B field.  These characteristics are 

similar to those of the metallized Si NWs, and typical top-down SiC NEMS resonators.  
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Once we obtain the onset of nonlinearity of the Si NWs, we can determine the intrinsic 

dynamic range for each of the devices with the ultimate noise floor limited by the 

thermomechanical fluctuations of the Si NWs.  The ideal intrinsic dynamic ranges of the 

devices are also collected in Table 6-1.  Typical 100−200MHz Si NW resonators have 

intrinsic dynamic ranges of 100−130dB, for various dimensions and Q’s.   

    In the resonance detection of these high-impedance Si NWs, the signal level is much 

lower than that of the metallized devices because of strong signal attenuation due to large 

impedance mismatch.  In this case, the high-resolution bridge-balancing and background-

nulling techniques have been crucial and indispensable for detecting the resonances.  To 

the best of our knowledge, this represents the first successful ≥200MHz 

electromechanical resonance readout from kilo-Ohm resonators.  This demonstrates that, 

although direct detection of resonances from kilo-Ohm devices does not scale well into 

the VHF/UHF regimes, carefully engineering the readout circuitry can help to push the 

limits for the detection of high-impedance VHF/UHF resonators.  Also comparing Fig. 

6.3 with Fig. 6.2, the noise level of the kilo-Ohm devices is higher than that of the 

metallized devices.  This is because the Johnson noise from the kilo-Ohm devices is 

larger than that from the metallized ~50Ω devices; and the noise floor of the 

measurements are limited by the thermal (Johnson) noise referred to the input of the 

preamplifier plus the amplifier noise.  In all these measurements we have calibrated the 

noise figure of the preamplifier to be 0.13dB (which is equivalent to a noise temperature 

of 9K, and a noise voltage of 0.158nVolt/√Hz).  This level is higher than the typical 

thermomechanical noise level of the Si NW devices (~0.01nVolt/√Hz), thus for 

resonance detection the measurements noise floor is set by the Johnson noise.  This noise 

floor mismatch usually induces a loss of ~25dB from the device intrinsic dynamic range, 

and for stable and reliable performance the device is often operating at least a few dB 

lower than the onset of nonlinearity, hence the practical dynamic range of the device is 
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typically around 70−95dB, which is already quite good and again on par with some of the 

best top-down SiC resonators [27].  The basic specifications of both metallized and bare 

Si NWs are summarized in Table 6-1.  As a reference, the specifications of a 

representative VHF SiC resonator (190MHz) are also provided.  The Si NWs have 

performances comparable to bottom-up SiC resonators.  If further scaled up, it is 

expected that these Si NWs resonators can also operate routinely in the UHF and 

microwave ranges. 

It is also observed that for similar dimensions and frequencies, pristine Si NWs have 

considerably higher Q’s than those of metallized devices.  For example, both the 

215MHz bare Si NW device and the 200MHz metallized device have similar aspect 

ratios, but the 215MHz bare Si NW device has a Q about 2.5 times higher than the 

200MHz metallized device.  This should mainly be ascribed to an effect of the 

metallization, which introduces an inhomogeneous interface between the structural Si 

NW and the conducting metal layers, and thus causes more internal friction as compared 

to the bare Si NW device.  The same aspect ratio implies that the devices should have 

similar clamping loss.  The higher Q’s of the pristine Si NWs also is a result of the fact 

that the devices are from epitaxially grown single-crystal Si and thus inherently have 

minimal internal friction, as the growth process is engineered for yielding high-quality 

single-crystal structures.  This is consistent with the studies of quality factors from top-

down NEMS devices ⎯ the heavily-doped, bare Si or GaAs beam devices have higher 

quality factors than their metallized counterparts [26].  This also suggests that, in devices 

which have to be metallized for better impedance matching and for which high Q’s are 

also desirable, it is crucial to develop engineering solutions to optimize the 

inhomogeneous interface between the metallization and the structural layers, and the 

internal friction of the metallization layers themselves.   
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Table 6-1  Specifications and performance of some measured VHF Si NW resonators.  The Si NWs 
are named by their nominal resonance frequency in MHz, with “M” denotes the use of metallization 
layers.  For comparison, we also list the specifications and performance of the 190MHz SiC resonator. 

Specifications SiNW-215 SiNW-80 SiNW-M-200 SiNW-M-188 SiC-M-190 
Length L (μm) 1.69 2.77 2.25 2.1 2.3 

Diameter d (nm) 81 74 142 118 w=150, 
t=100 

Aspect Ratio 20.9 37.4 16 18 15.3 

Metallization no 
metallization 

no 
metallization 

30nm Al 
+5nm Ti 

30nm Al 
+5nm Ti 

30nm Al 
+5nm Ti 

Device Resistance (Ω) 3.135k 3.616k ~50 ~50 ~50 
Resonance Frequency 
f0 (MHz) 215.415 80.57 199.68 187.86 190 

Quality Factor (Q) 5750 13100 2000 2500 5000 
Spring Constant keff 
(N/m) 28.4 5.45 90.3 122.5 141.1 

Device Mode Mass (fg) 15.5 21.3 57.4 87.9 96 
Amplitude aC (nm) 0.8 0.6 1.6 1.8 1.0 
Dynamic Range (dB) 121 105 134 135 128 
Measured Frequency  
Stability 
(<δf0/f0>) (τ=1sec) 

1.34×10-6 1.45×10-6 1.82×10-7 1.47×10-7 1.1×10-7 

Mass Responsivity 
(Hz/zg) 6.9 1.89 1.74 1.07 1.16 

Mass Resolution (zg) 41 62 21 26 21 

6.5  Piezoresistive Detection of Si NW Resonators 

Another very attractive attribute of these Si NWs is that they are piezoresistive, with 

surprisingly large gauge factors approaching the order of ~103, as was recently 

investigated in some initial Si NW static bending experiments combined with transport 

measurements by using AFM tips to bend the Si NWs or by bending a calibrated 

substrate upon which the Si NWs are mounted [30].  Here we explore the piezoresistive 

properties of these Si NWs and exploit this effect to perform piezoresistive detection of 

the Si NW resonators.  For these VHF Si NWs, we demonstrate the combination of 

magnetomotive excitation and piezoresistive detection.  We not only apply RF driving 

current through the Si NWs, as required by the magnetomotive excitation, but also apply 
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bias current through the NWs for piezoresistive readout.  For high-impedance VHF 

piezoresistive Si NWs we apply an RF bias instead of a DC bias to detect the response by 

piezoresistive frequency down-conversion [31].   

 

Fig. 6.4  Piezoresistive frequency down-conversion detection scheme with bridge circuit for pairs of 
Si NWs resonators.  The ‘drive’ and ‘bias’ signals are combined (⊕) and sent to the bridge circuit 
consisting of the 2-way 180° power splitter (PS), the amplitude and phase adjustment (Ai, φi) and a Si 
NW device in either branch of the bridge.  The transmission response is amplified by a low-noise 
amplifier (LNA) and properly filtered with a band-pass filter (BPF), and then detected by an RF lock-
in amplifier with the reference signal generated by direct frequency down-conversion (⊗) from the 
‘drive’ and ‘bias’ signal sources.   

    As shown in Fig. 6.4, in a balanced-bridge circuit scheme both of the high-impedance 

(kΩ) bare Si NWs server as piezoresistors for signal down-conversion.  RF signals from 

two synchronized sources (two HP 8648B units), one the ‘drive’ source providing the 

sweeping RF current (ω) for magnetomotive excitation and the other a ‘bias’ source 

providing the RF bias (ω-Δω), are first combined and then sent to the bridge circuit.  

When the RF drive (ω) is swept in the vicinity (resonance bandwidth) of the Si NW 

resonance (ω0), the magnetomotive effect excites the NW into resonant motion, which 

yields a device resistance change ΔRicos(ωt) for the i-th (i=1,2) device with original 

resistance Ri0 in the circuit, 
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where v is the Poisson ratio, γ is the resistivity, and ( ) ( ) εγγν Δ++≡ 21G  is the gauge 

factor.  For semiconducting Si NWs, G is dominated by the ( ) εγγΔ  term, which is 

usually taken as a constant and can be of the order 102~103 [30], while the geometric term 

is only (1+2ν)≈1.5 given the Poisson ratio of ~0.25 for Si.  The first-order net strain of 

the doubly-clamped Si NWs in eq. (6-1) is mainly due to the Si NW’s tapered structure 

and the asymmetry in doping and resistivity distribution in the Si NW cross section and 

along the NW. 

    Setting RF bias far enough from the resonance will not induce appreciable Si NW 

movement, but the RF bias current sees and picks up the device resistance change and 

thus yields a piezoresistive signal (as seen by the first stage amplifier), 
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where VB is the bias RF voltage (as seen by the 180° 2-way power splitter) and φ is the 

(initial) phase offset between the synchronized ‘drive’ and ‘bias’ RF signals.  The up-

conversion (2ω-Δω) component is filtered out and the down-conversion Δω is picked up 

as the Si NW piezoresistive response, which is detected by an RF lock-in amplifier with 

the reference signal being provided by direct mixing of the ‘drive’ and ‘bias’ signals (Fig. 

6.4).   

In this scheme, the sweeping frequency ‘drive’ source is working as a network 

analyzer’s source in the network analysis mode for two-port detection from which the 
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resonances (such as those in Fig. 6.1 and Fig. 6.2) have been obtained.  While the 

piezoresistive signal mixing cannot be implemented in simple network analysis mode, 

here the synchronized ‘bias’ source is generating RF bias which is constantly Δω away 

from the ‘drive’ frequency.  One uniqueness of this scheme is that it is to date the first 

combination of the magnetomotive excitation, which is particularly powerful for 

VHF/UHF/microwave NEMS resonators [25], and the piezoresistive detection, which is 

very convenient and effective for high-impedance (kΩ) devices.  We choose the down-

conversion intermediate frequency Δω to be high enough to satisfy two considerations:  (i) 

Δω is much larger than the resonance bandwidth, i.e., Δω>>ω0/Q, so that when the 

‘drive’ source is sweeping the frequency in a wide band, only the ‘drive’, but not the 

‘bias’, hit the device resonance frequency, thus only obtaining one resonance peak for 

each device; and  (ii) Δω  is in the frequency range for a convenient RF lock-in detection.   
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Fig. 6.5  VHF NEMS resonance transduction by the combination of magnetomotive excitation and 
piezoresistive detection.  Resonance signal of the high-impedance 215MHz Si NW device without 
metallization, detected by using the piezoresistive frequency down-conversion scheme.   
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Fig. 6.5 shows the measured piezoresistive down-conversion signal from the 215MHz 

Si NW device by using an intermediate frequency Δω=20MHz.  As shown in Fig. 6.5 

inset, the piezoresistive down-conversion signal amplitude has a linear dependence on 

bias, confirming the piezoresistive effect as described by eq. (6-2). 

6.6  Si NW Mechanical Properties Measured in Resonant Mode 

Thus far, we have demonstrated that the Si NWs grown across the microtrenches are 

robust VHF nanomechanical resonators, and that they are also versatile devices in terms 

of electrical attributes and transduction schemes, either being matched to RF/microwave 

standard (50Ω) with metallization, or as high-impedance but heavily-doped 

semiconductor piezoresistors.  Since the Si NWs are from single-crystal epitaxial growth, 

they have pretty high Q’s as bare piezoresistive devices, and also decently high Q’s as 

metallized devices.  All these attributes suggest interesting applications for Si NWs.   

    An immediate application of the demonstrated Si NW resonators and techniques is 

towards the study of the basic properties of VLS epitaxial Si NWs.  For instance, the 

measurement of the Young’s modulus of these Si NWs can be made in the resonance 

mode, instead of using AFM to perform the tedious static bending experiments.  While 

bending Si NWs with AFM tips appears to be straightforward for measuring the strength 

and elastic modulus (Young’s modulus), the displacement and strain in the Si NWs are 

usually inferred from the AFM tip’s movement and AFM cantilever’s deflection, and are 

thus carried out with possibly large error bars.  For the fundamental flexural mode of 

non-metallized doubly-clamped Si NW resonators, the fundamental resonance frequency 

is 

( ) 220 8913.0
2

4.22
L
dE

A
IE

L
f YY ⋅==

ρρπ
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where EY is the Young’s modulus of Si NW,  ρ is mass density (2330kg/m3), I=πd4/64 is 

the momentum of inertia and A=πd2/4 is the cross section of the Si NW, respectively, 

with d the NW diameter.  For metallized Si NWs, the mass loading effect of the 

metallization should be considered and the resonance frequency is 

m

mY
m mm

m
L
dE

f
+

⋅⋅= 2,0 8913.0
ρ

,      (6-3b) 

where m is the structural Si NW mass, and mm is the mass of the metallization layers.  

The resonance mode measurements have the advantage that the resonance frequency can 

be measured very precisely and the Young’s modulus can be determined based on eq. (6-

3) even without knowing the details of the displacement and strain of the device.  The 

accuracy will partially rely on the accurate measurement of the Si NW dimensions, which 

is also essential for the AFM contact mode bending method.  Considering that the AFM 

tip size is usually much larger than the diameter of a Si NW, and that AFM approaching 

and pushing Si NW at some sweet spot is trial-and-luck based, and difficult and time-

consuming, determination of the mechanical rigidity and elastic properties by reliably 

measuring resonance mode frequency is a valuable technique.   

Table 6-2 presents the Young’s modulus extracted from the accurate measurements of 

the resonance frequencies of the devices, based on eq. (6-3).  The Si NWs’ diameters are 

read out from high-resolution SEM imaging with an error bar of ~2nm, and the length 

error is within ~2%.  The mass density ρ is well-known for single-crystal Si and does not 

change from bulk Si to Si NWs, as the single-crystal nature of the Si NWs has been 

verified with STM [21].  Hence the accurate measurement of resonance frequency leads 

to reliable determination of Young’s modulus.   
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As shown in Table 6-2, the Si NW Young’s modulus values obtained in this study are 

very close to those of bulk single crystal Si (111), ~160−200GPa, as widely accepted and 

taken in literature; and are in very good agreement with a recent elaborate AFM bending 

study [22].  We note that the Si NWs in this AFM study [22] and the present resonance 

measurements have been produced with similar processes in the same system in the same 

lab, but in different batches.  There is a noticeable difference in the measured Young’s 

modulus between the above data and 93−250GPa from another recent AFM study [23].  

The difference may be ascribed to such subtleties in Si NWs as defects, and detailed 

differences in the two kinds of AFM bending experiments and their measurements 

accuracy and reliabilities [22,23].   

Table 6-2  Young’s modulus measured by dynamic method with the resonances of the Si NW 
resonators, as compared to static measurements with AFM bending experiments (we note that the 
widely used Young’s modulus of bulk Si (111) is in the range of 160−200GPa). 

Experiments and Samples Device Diameter 
d  (nm) 

Si NW Length  
L  (μm) 

Young’s Modulus 
EY  (GPa) 

SiNW-215 81 1.69 170 ± 15 
SiNW-80 74 2.77 205 ± 18 
SiNW-M-200 142 2.25 187 ± 16 
SiNW-M-188 118 2.1 200 ± 17 
AFM Bending-Cantilever [22] 120 8 ≈186 
AFM Bending-Beam [22] 190 12 ≈207 
AFM Bending-Cantilever [23] 140 10 ≈93 
AFM Bending-Beam [23] 200 10 ≈150 
AFM Bending-Beam [23] 200 10 ≈250 

6.7  Frequency Stability and Mass Sensitivity of Si NW Resonators 

The Si NWs’ attributes also make them interesting for nanosensor applications.  We 

perform initial experimental investigations of the frequency stability and sensitivity of 

these Si NWs.  We embed the Si NWs resonators into low-noise phase-locked loop (PLL) 

circuitry for real-time resonance frequency tracking to measure the instantaneous 

frequency fluctuations, and thus the frequency stability characteristics as a function of 

averaging time [27,28].  Shown in Fig. 6.6 is the measured real-time frequency 
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fluctuation with 1 sec averaging time, and the instantaneous frequency fluctuation is 

about 0.182ppm, for the metallized 200MHz Si NW resonator.  In the real-time 

nanomechanical mass sensing paradigm [27,32], using this device as a mass sensor with 

its mass responsivity of 1.74Hz/zg, its frequency stability level translates into a mass 

resolution of 21g (1zg=10-21g).  The Si NWs’ frequency stability and mass sensitivity 

performance are again comparable to the performances of some of the best top-down 

mass sensors made of single-crystal high-quality SiC.  In particular, the 21zg noise floor 

is almost exactly the same as that achieved in the 100-zeptogram real-time mass loading 

steps monitored by a 190MHz SiC resonator [27].  The measured results of the frequency 

stability data and corresponding mass sensitivity for several other Si NWs devices are 

also collected in Table 6-2. 
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Fig. 6.6  Si NW resonator frequency stability characteristics.  Fractional frequency fluctuation of the 
200MHz metalized Si NW resonator, measured in real time with an averaging time of τ≈1sec for each 
readout of the frequency data tracked by the phase-locked loop.  The measured noise floor is 
0.182PPM, which combined with the device mass responsivity, 1.74Hz/zg, leads to a resonant mass 
resolution of 21zg.   
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Fig. 6.7  Measured frequency stability performance, the Allan deviation as a function of averaging 
time, for the 200MHz Si NW resonator.  The optimized Allan deviation achieved is 7.6×10-8 for 
around 5~10secs averaging time. 

6.8  Quality Factor and Dissipation Issue of Si NW Resonators 

Just like for the top-down SiC NEMS resonators, the quality factor and dissipation issue 

in the Si NW resonators are also of great interest and importance.  We have conducted 

careful measurements of the Q’s and hence the dissipation in these VHF Si NWs.  Our 

measurements and analyses follow the logic and approaches we have employed in 

studying the dissipation of top-down UHF SiC resonators in Chapter 5.  Fig. 6.8 shows 

the measured dissipation as a function of device temperature for both the 188MHz and 

200MHz metalized Si NW devices.  The weak power law dependency of dissipation on 

temperature is again clearly visible.  The dashed line in Fig. 6.8 shows the Q-1~T0.3 fit to 

guide the eyes—the Q-1~T0.3 dependency has also been identified in top-down Si MEMS 

and NEMS resonators (see Chapter 5).  Here we see that this dependency fits the 

experimental data of 200MHz device very well, and fits that of the 188MHz device fairly 

well in the low-T range, while showing a visible deviation for T>60K. 
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Fig. 6.8  Measured dissipation Q-1 as a function of temperature for two metalized Si NW resonators 
(200MHz and 188MHz devices). The dash line is the Q-1∝T0.3 weak power-law dependency, as has 
been found in top-down Si MEMS and NEMS resonators. 

    The almost constant difference (offset) between the two traces in Fig. 6.8 is ascribed to 

the difference in clamping loss in these two devices, similar to the case of the SiC devices 

in Chapter 5.  In these VHF Si NW resonators, the measurements also manifest that the 

clamping losses are the most significant and dominating dissipation mechanism.  In brief, 

this is because of the energy radiation (loss) from the resonant mode of the vibrating Si 

NW to its supporting pads at the two self-welded ends.  There is an interesting subtlety 

worth mentioning here: Although for these as-grown suspended Si NWs there is no 

etching undercut of the supporting pads, which is inevitable in top-down NEMS 

resonators, the self-welded clamping joints at the facing microtrench walls are usually 

fatter than the Si NW itself; this may have an effect resembling that of the etch undercut 

in the top-down devices and hence comprise the clamping losses.   
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6.9  Comparison with Other Nanowire Resonators 

It would also be of interest to compare the Si NWs with other bottom-up nanowire-based 

rudimentary devices.  The first bottom-up nanowire-based VHF NEMS resonator 

(105MHz) was demonstrated in a platinum (Pt) nanowire [33], where the device is 

assembled and connected to electrodes by painstaking processes including runs of AFM 

scanning and locating, coordinate mapping and e-beam lithography.  The device then had 

to be suspended by wet etch and super critical point drying processes [33].  In 

comparison, the Si-NW-in-microtrench devices in the present work are fabricated in a 

much more systematic and controllable manner, thus having greatly enhanced yield of 

functional devices (over 80% of suspended doubly-clamped Si NW devices have 

reasonable resistances).  Besides, the material itself, single-crystal Si, represents much 

more practical applications in nanoelectronic and electromechanical devices than Pt could 

promise.  Furthermore, the Si NWs in this work are already operating in the ≥200MHz 

range and are allowing for various signal transduction schemes.   

Compared to some of the smallest NWs made by the superlattice pattern transfer 

technique, which are especially attractive for making high-density arrays and crossbar 

junctions [34], the Si NWs in this work have great advantages in terms of fabrication and 

the development of field-effect-based electronic and electromechanical devices.  In 

particular for as-grown free-standing Si NWs, recent progress has been made in 

controllable growth of vertically aligned Si NW arrays on patterned Si substrate by using 

Au colloid dispersion [35], selective growth of vertically and laterally aligned Si NW 

arrays by the use of galvanic displacement processes [36] and high-density Si NW arrays 

with uniform diameter and spacing by use of a porous anodic alumina mask for Si NW 

epitaxial growth [37].  By elaborate engineering of variants of these processes, it would 

be possible to make arrays of suspended cantilever and doubly-clamped Si NWs with 
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desired diameter, density and spacing, for large-scale integrated resonator arrays.  With 

these arrays, interesting phenomena of Si NW resonator arrays, such as collective modes 

[38], coupling between individual resonators in the array, and the energy propagation in 

high density arrays, and their potential applications, could all be investigated in the near 

future.   

From another point of view, to consider the ultimate limits of the Si-NW-based 

nanomechanical resonators, we note that the present Si-NW-in-microtrench devices and 

the aligned Si NW arrays typically have their diameters in the 40~150nm range where the 

aligned epitaxial growth can have reliable, high yield with high quality.  Meanwhile, to 

date the smallest Si NWs reported are of molecular dimensions with as small as 3nm 

diameter [39], grown by using silane with very small Au particle catalysts in a process 

that does not directly yield suspended devices and arrays of devices.  We expect to 

combine the molecular scale Si NW growth techniques with the suspended Si NWs and 

arrays technologies, so that Si NW resonators of molecule dimensions can be made.  

Further scaling down the Si NWs dimensions, ultimately to the molecular scale, can not 

only offer resonators operating well into the microwave regime, but also may provide 

unique probes for fundamental studies such as quantum electro mechanics [40].   

6.10  Chapter Summary 

In the work presented in this chapter, we have demonstrated that the single-crystal Si 

NWs grown in pre-patterned microtrenches by epitaxial VLS process are excellent 

NEMS resonators.  These Si NWs are as-grown suspended and can be fabricated as either 

cantilevers or doubly-clamped resonators.  They are robust and the self-welded junctions 

between the Si NWs and the microtrench walls provide rigid clamping anchors for the 

resonators to allow for VHF and UHF operations.  The Si NWs are versatile resonators, 
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which can be metallized or doped to utilize as piezoresistors, thus allowing different 

resonance transduction schemes.  Besides the mangetomotive transduction, which is 

suitable for VHF/UHF resonators, we have also successfully demonstrated the novel 

scheme of combining magnetomotive excitation and piezoresistive detection.  With well-

controlled piezoresistive properties of the Si NWs this can be further used as a detection 

scheme with other excitation techniques (e.g., electrostatic).  The Si NWs have proven 

themselves to have high performances in terms of quality factors, operating frequencies 

and resonance frequency stabilities, comparable to those of the best top-down NEMS 

resonators.  The measured frequency stabilities for the Si NWs, combined with their 

superb mass responsivities, demonstrate that they are among the state-of-the-art 

nanomechanical mass sensors with sensitivities well in the zeptogram regime.  Currently, 

ongoing research is focused on making even smaller high-quality suspended Si NWs for 

UHF/microwave operation and other related enabling technologies.   
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Chapter 7 
 
 
Conclusions and Perspectives 
 
 

This chapter concludes the thesis by delineating a realistic path to 

single-Dalton mass sensitivity with UHF NEMS resonators.  A futuristic 

outlook of the technologies developed in the thesis is described.  Some 

interesting and important research topics are envisioned, and the enabling 

UHF NEMS technologies for these topics are discussed. 

 

 

 

7.1  Concluding Remarks 

Low-noise self-oscillation and phase-locking with UHF NEMS resonators have been 

developed as the two key technologies that are indispensable for implementing the 

generic protocol of real-time NEMS mass sensing, and for developing the sensor system 

at the back end of a NEMS-based mass spectrometer.  With typical ~500MHz devices, 

we have achieved mass sensitivity approaching the level of ~1zg (~0.6kDalton).  This 
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level of sensitivity is readily useful for mass sensing of many typical biomolecules (with 

their masses in the 1−100zg range). 

  In pushing for the ultimate mass resolution required for mass spectrometry, our 

analyses have shown that the single-Dalton (1amu) mass sensitivity is realistically within 

reach if we continue to extend our roadmap beyond the demonstrated 200~500MHz 

range (see Preface).  As listed in Table 7.1, with next generations of UHF/microwave 

NEMS resonators (from 500MHz to 1GHz), sensitivity can be further improved from 

hundreds of yoctograms to the single-Dalton (1 Dalton=1.66yg) level.  The prediction of 

this extended roadmap is realistic:  All the device dimensions proposed here are 

practically achievable with today’s nanofabrication technologies; their Q’s are moderate 

by taking account what we have observed compromise in Q’s of UHF devices.  The 

major challenges will be efficient signal detection from these even smaller devices, and 

noise matching issues, which might prevent us from smoothly approaching the 10-9~10-10 

frequency stability.  According to our recent related efforts and successful experience, 

we think these challenges will be overcome by further elaborately engineering low-noise 

oscillator and phase-locking technologies for these devices.   

 

Table 7-1  Realistic roadmap and path toward single-Dalton mass sensitivity with NEMS. 

Resonance 
Frequency 
(Device) 

Device Dimensions 
L(μm)×w(nm)×t(nm) 

Quality 
Factor 

Q 

Active 
Device 
Mass 

Meff (fg) 

Dynamic 
Range 
(dB) 

Frequency 
Stability 
σA (1sec) 

Mass 
Sensitivity 
δM (yg) 

650 MHz 
(SiC Beam) 

1.38×120×80 2000 40 104 1.2×10-9 137 

1 .03GHz 
(SiC Beam) 

1.1×120×80 1000 32 113 6.8×10-10 62 

1.03 GHz 
(Smaller SiC Beam) 

0.7×50×50 1500 5.6 110 4.0×10-10 6.4 

1.0 GHz 
(Si NW, Bottom-Up) 

L=0.625μm, 
d=50nm 

2000 2.1 100 3.2×10-10 1.9 
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  Still more, besides NEMS mass sensing, we note that both technologies are of at least 

equal importance for engineering high-performance UHF NEMS resonators for 

applications in nanomechanical signal processing, communication and computation. 

Our investigation on the dissipation mechanisms in UHF NEMS resonators leads to 

useful guidelines for future device Q-engineering.  The work on high-performance Si 

NW resonators suggests a promising alternative for approaching some of the above 

applications, particularly when molecular-scale devices will play a key role. 

 

 

7.2  Perspectives and Future Topics 

We propose and discuss the following interesting research topics and directions 

extending beyond the work in this thesis.   

  Immediately a prototype of single-biomolecule (mass) counting with NEMS can be 

developed based on the sensitivity already demonstrated in this thesis.  Currently we 

have an in-progress project in which we aim to weigh individual, big biomolecules one 

by one.  The next steps along this direction include weighing and distinguishing binary 

mixtures of biomolecules with large enough mass difference, demonstrating yoctogram 

sensitivity and approaching single-Dalton sensitivity.  All these are important 

milestones toward NEMS-based mass spectrometry.   

  In parallel, transforming present UHF NEMS technologies into integrated, on-chip 

NEMS technologies is another inviting but challenging topic.  This would be the 

prerequisite for applications of NEMS in signal processing and communication.  On this 

path, the major challenges would be integrated transduction of UHF NEMS resonators, 
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and integration with IC and packaging, which would require pushing the limits for both 

device nanofabrication and the scaling laws.  In fact, the recent successful 

commercialization of Si MEMS resonators technologies by Discera (www.discera.com) 

and SiTime (www.sitime.com) has conveyed encouraging messages, because these 

MEMS resonators faced similar practical challenges as NEMS today do.  Along this 

direction, but thinking of scaling down the best of MEMS resonators, it is interesting to 

envision nanofabricated bulk acoustic resonators (nanoBARs) and nanodisk resonators 

that would promise the highest frequency-quality factor-product (f×Q), and thus being the 

best candidate for ultralow power nanomechanical signal processing.  This exploration 

would help open up new possibilities of further miniaturizing the state-of-the-art BAR 

and disk resonators.  For beam-structured NEMS resonators, coupled resonators and 

arrays of resonators are expected to boost up power handling capability and are worth 

studying for potential applications in tunable oscillators and filters. 

  For some moderate mass sensing applications where the sensitivity down to the 

single-molecule level is not very crucial and our UHF NEMS technologies are already 

more than enough sensitive, it is desirable to engineer the technologies into portable or 

handset systems.  In this regard, both the PLL and oscillator modes can be used, but the 

oscillator mode has a special advantage of being an active system and not requiring 

external stable (or moderately stable) VCOs.  In particular, the oscillator mode provides 

a generic solution for the signal output of arrays of NEMS resonators.  Moreover, the 

oscillator mode also suggests a possible solution for wideband measurements of NEMS 

resonators in fluids. 

  The low-noise UHF NEMS technologies have significant implications for fundamental 

physics research from which many of today’s NEMS structures have originated.  In a 

generalized sense, the technologies we have developed are sensing and detection 

technologies involving low-loss nanomechanical devices, which are essentially very 

http://www.discera.com/
http://www.sitime.com/
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interesting mesoscopic systems under certain physical conditions.  For instance, for 

quantum electromechanics (QEM) measurements (such as quantum limited displacement 

sensing and Fock state detection), in principle all the NEMS oscillator, phase-locking, 

NW and high-Q technologies are relevant and can be possibly useful.  These 

technologies can also be used in probing mesoscopic phenomena inside some specifically 

designed NEMS devices, and the wealthy phenomena and processes on the surface of a 

NEMS device.  Furthermore, these technologies can also be employed to study a wide 

spectrum of coupling effects when the UHF NEMS device is involved as a sensor or 

probe in the coupling.  For example, it would be very interesting to study the coupling 

between a NEMS resonator and a nearby cofabricated photonic device (e.g., a 

nanofabricated laser).  This kind of exploration may lead to novel transductions that are 

particularly useful for mesoscopic nanodevices but not available if simply scaling down 

from the macro world and MEMS.  However, most of these fundamental studies would 

probably have to be performed in ultra-high vacuum at cryogenic temperatures. 

Facing the future, although today’s NEMS technologies are still in their sprouting 

stage, roughly like transistors in the 1950’s and MEMS in the 1990’s, we have good 

reasons to believe that exploring NEMS and engineering NEMS is a great enterprise.  In 

particular, high-performance UHF NEMS resonators offer immense potential 

applications that critically rely on NEMS engineering—for which there is plenty of room, 

indeed. 
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Appendix A 
 
 
List of Major Instruments and Apparatus 
 
 
A.1  Vacuum Systems 

1.  Large Ultra-High Vacuum (UHV) System 

Large UHV Chamber:        Home Built 

Pumps Installed: Turbo-V 250      Varian 

Backing/Rough Pump: Diaphragm Vacuum Pump  Varian 

2.  Small High Vacuum Cryostat Systems (Two Cryostat Dippers) 

Small Cryostat Chambers (Dippers):     Home Built 

Movable Pump Station: Turbo-V 300     Varian 

A.2  Cryogenic Apparatus 

Large Helium Dewar:       Precision Cryogenic Systems, Inc. 

Superconducting Magnet Power Supply IPS120-10:  Oxford Instruments 

LakeShore 331 Temperature Controller:    LakeShore 
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A.3  Instruments for Electronic Measurements 

 

Agilent 34401A Digit Multimeter       Agilent 

Agilent 4395A Network/Spectrum/Impedance Analyzer  Agilent 

Agilent 53132A Universal Counter      Agilent 

Agilent E3611A DC Power Supply      Agilent 

Agilent Infinium 8000 Series Oscilloscope     Agilent 

 

HP 35665A Dynamic Signal Analyzer     Hewlett Packard 

HP 3577A (5Hz-200MHz) Network Analyzer   Hewlett Packard 

HP 8563E (9kHz-26.5GHz) Spectrum Analyzer  Hewlett Packard 

HP 8648B (100kHz-2GHz) Signal Generator   Hewlett Packard 

HP 8720C (50MHz-20GHz) Network Analyzer:  Hewlett Packard 

 

RDL NTS-1000B Phase Noise Analyzer①    RDL Inc. 

 

SR560 Low-Noise Preamplifier:     Stanford Research Systems 

SR830 DSP Lock-In Amplifier:     Stanford Research Systems 

SR844 RF Lock-In Amplifier:      Stanford Research Systems 

 

All the small components and subassemblies involved in the systems and measurements 
are not listed. 

 

                                                 

①Courtesy of Prof. Ali Hajimiri and his group. 
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A.4  Nanofabrication and Characterization Instruments 

 

Karl Suss MJB3 Mask Aligner       Karl Suss 

Nikon Optiphot (Japan 281438) Optical Microscope  Nikon 

Samco UV&Ozone Dry Stripper, Model UV-1    Samco 

Headway Spinner, Model PWM32       Headway Research Inc. 

04644 Series Digital Hot Plate/Stirrer      Cole-Parmer 

Ultrasonic Bath and Cleaner        Cole-Parmer 

 

JEOL JSM-6400 Scanning Microscope     JEOL 

Sirion High Resolution SEM        FEI Company 

Quanta (Environmental) SEM        FEI Company 

 

NanoScope Dimension 3000/3100 AFM and Scanning Probe Microscope 

              Digital Instruments 

 

Edwards Auto 306 Thermal Evaporator     Edwards 

Temescal BJD-1800 Electron-Beam Evaporator   Temescal 

 

ECR Plasma Etch System         Home Built 

XeF2 Etch System②          Home Built 

 

MEI Wire Bonder, Model 1204W, Serial 6318    Marpet Enterprises Inc. 

 

Alessi REL-3200 Probe Station with Optical Microscope Alessi 

 

                                                 

②Courtesy of Prof. Axel Scherer and his group. 
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Appendix B 
 
NEMS Resonator with the Damped 
Harmonic Oscillator Model 
 
 
The simple harmonic oscillator (SHO)① has far more wealthy and profound implications 

and applications beyond its seemingly simplicity as covered in elementary physics.  “It 

is the key tool that permits experimenters to detect extremely weak mechanical forces 

and electromagnetic signals and to produce highly stable standards of time and frequency.  

The oscillator, for example, underlies radio and microwave receivers, gravitational-wave 

detectors, clocks, searches for quarks, tests of the equivalent principle, and tests of 

theories of superfluidity and superconductivity.  ...” [1].  It is of the same fundamental 

significance in the research of NEMS.   

Inevitably any of the NEMS resonators we build would be dissipative, again of the 

similar issue addressed in [1].  Here we briefly document the mathematical description 

of the damped SHO (DSHO) and its frequency response, which has been widely used, 

e.g., in the analyses of device transduction schemes and in the modeling of the feedback 

controls of NEMS resonators.   

                                                 

①Note here the word oscillator is simply adopted from convention in widely used textbooks and literatures.  
More precisely it should be resonator, as addressed in Chapter 3.   
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The frequency-domain response of the DSHO can be written as the relation between 

the displacement and driving force as follows (and as addressed in Chapter 2), 
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Here  is the effective stiffness, with M2
0ωeffeff Mk = eff the effective mass and ω0 the 

angular frequency at the fundamental resonance.  Both displacement and force here are 

complex variables.  Normalized to the static displacement ( ) ( ) effkFa 00 =≡= ωω , we 

have the normalized force−displacement transduction relation 

( ) ( ) Qxjx
x

+−
= 21

1H ,            (B-2) 

where 0ωω≡x .  The amplitude response is then 

( ) ( )
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xxH

+−
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and the phase response is 
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=∠≡ 21
arctan

x
QxxHφ .           (B-4) 

The frequency-domain response functions for both amplitude and phase, as described 

by eqs. (B-3) and (B-4), with various given device Q’s, are plotted in Fig. B.1.  

Likewise, Fig. B.2 shows the first derivatives of the amplitude and phase response 

functions, and Fig. B.3 demonstrates the second derivatives.  These characteristics are 

important for the analyses and designs of device transfer functions and feedback controls.   
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Fig. B.1  Frequency-domain response of the damped harmonic resonator.  (a) Amplitude and (b) 
phase, as functions of frequency of the driving force.   
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Fig. B.2  Frequency-domain response of the damped harmonic resonator.  The first derivatives of (a) 
amplitude and (b) phase, respectively, as functions of frequency of the driving force.   
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Fig. B.3  Frequency-domain response of the damped harmonic resonator.  The second derivatives of 
(a) amplitude and (b) phase, respectively, as functions of frequency of the driving force.   
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Appendix C 
 
A Note on the Quality Factor (Q) 
 
 

C.1  The Lorentzian Function 

The general form of the Lorentzian function is 
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where y0 is offset, A is a scale factor; Γ is an important parameter called “Full Width at 

Half Maximum (FWHM)”— its meaning is exactly what it says.   

  Sometimes, the normalized Lorentzian function is also very useful, i.e., 
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with 
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C.2  Resonance, Q, and Their Connections to Lorentzian 

The original definition of the quality factor (Q) of a resonator is regarding the energy 

dissipation — “the quality factor is the ratio of energy stored in the resonator, to the 

energy lost (dissipated) per radian of periodic motion of the system”, 

E
EQ
Δ

π2= ,             (C-3a) 

where E is the stored energy and ΔE is the energy lost (dissipated) per cycle (for 

convenience).  Often it is also written as 

C
C P

EQ ω= ,             (C-3b) 

where ωC and PC are the carrier frequency and carrier power, respectively.   

  Based on this original definition, many formulas can be developed (e.g., the Zener’s 

model, etc.).  Considering the frequency response, the important thing is, for a resonator, 

it can be derived that the power spectrum of the resonant system has the following form 

(an excellent example to verify this is probably just to look at a beam resonator modeled 

as a simple harmonic oscillator driven by thermomechanical fluctuation) 
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which is exactly the same form of a standard Lorentzian, as presented in eqs. (C-1) and 

(C-2).  Within this context, the quality factor of the resonance determined by the 

resonance power spectrum is 
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Γ
0ω=Q ,              (C-4b) 

which can be proved to be in consistence with the original definition in eqs. (C-3a) and 

(C-3b). 

This provides a much easier way to determine the Q, which otherwise would be more 

difficult, as according to eqs. (C-3a) and (C-3b), one has to do time-domain measurement 

to determine the Q (eqs. (C-3a) and (C-3b) imply that the Q can be determined by 

time-domain ring-down counts of cycles).  So now, Q can be identified by measuring 

frequency-domain response, or more accurately, the power spectrum of the resonance in 

the frequency domain.   

 

C.3  The Specific Case of Magnetomotive NEMS Resonator 

In the case of magnetomotive transduction of NEMS resonator, one has the EMF voltage 

signal response as the detected resonance signal 
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Q
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where C is a constant determined by some detailed parameters in the magnetomotive 

transduction.  Thus, the power spectrum of the resonance is (note the voltage is 

complex) 
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We see that this power signal of the resonance is Lorentzian, in the condition of high Q 

approximation.  In fact, in the vicinity of resonance frequency ω0, ω=ω0+δω, and in the 

limit of high Q, eq. (C-6) transforms into (high Q assures that some high order terms can 

be thrown away)   
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or, 
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So compare to eqs. (C-4a) and (C-4b), we see that the power signal of the resonance is 

Lorentzian in the limit of high Q’s; and the Q can be extracted from the power signal 

curve of the resonance with the same and correct convention, as defined in eq. (C-4b) 

and consistent with eqs. (C-3a) and (C-3b).   

  In real implementation, fitting to Lorentzian is just to fit the power signal resonance 

curve to eqs. (C-7a) or (C-7b).  For example, the Lorentzian function embedded in the 

software Origin fits to eq. (C-7b), or more accurately, the general form eq. (C-1), with 

an offset.  If we program with Matlab or others to do the fitting, both (C-7a) and (C-7b) 

and other equivalent forms can be used, see whichever is convenient. 

  Then, take a look at the amplitude of the voltage signal of a 

magnetomotively-transduced resonance, from eqs. (C-5) and (C-6), we see that the 

amplitude of the voltage signal is 
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We note that it is NOT Lorentzian.  All we can do with this is, according to eqs. (C-6) 

to (C-7a) & (C-7b), the amplitude of the voltage signal can be approximated to the 

square root of a Lorentzian, in the high Q limit.   
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With this, to extract Q from a voltage signal resonance curve, it can be readily done by 

adding this function to Origin’s user-defined fitting function, or simply convert voltage 

signal (amplitude) data into voltage-squared (|V|2, which is then power signal) and fit 

this data directly with Lorentzian.  Or, implement eq. (C-9) with Matlab or other 

software.   

 

Summary:  The power signal of a magnetomotively-transduced NEMS resonance is 

Lorentzian with the high Q approximation.  If we have voltage signal (amplitude) data, 

note that it is not Lorentzian, but the square-root of Lorentzian, with the same high Q 

approximation.  So, it is conceptually not correct to directly fit a voltage signal to 

Lorentzian, even though one can force a fitting program to fit the data to Lorentzian and 

get Q number might be very close to the one obtained by correctly fitting to the voltage 

data to the square-root of Lorentzian, i.e., eq. (C-9).   
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C.4  The Mysterious 3  

What if we do a brute fitting — we just force a program to fit the voltage data trace (not 

power data trace) to Lorentzian?  Although such things have been done in some 

literatures in this community, as said, this is not correct thing to do because the voltage 

data is not Lorentzian.  Now let us see what will happen anyway.   

The brute-force fit can still give us the resonance frequency ω0, and the FWHM as it 

sees (even though with inappropriate data, the brute fit can still try to get the FWHM as 

what it does is just a routine).  We can calculate the FWHM by knowing that the 

voltage data is actually the square-root of Lorentzian. From eq. (C-9) or simply 

following eq. (C-1), we have 
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Where A0 is a scale factor, and Γis the FWHM of the Lorentzian power signal, as in eq. 

(C-4b).  The “Half Maximum” seen by the brute fit is then 

Γ2
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Γ
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00 AA =⋅ .           (C-11) 

The “Full Width at Half Maximum (FWHM)” seen by the brute fit is then the distance 

between the solutions of the equation (let it assume “Half Maximum”) 
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Solving eq. (C-12) yields 
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=−ωω ,            (C-13) 

And the two roots assuming the “Half Maximum” are 

Γ
2
3

0 +=+ ωω  and Γ
2
3

0 −=− ωω .       (C-14) 

Therefore, the “Full Width at Half Maximum” seen by the brute fit is 

Γ3=−= −+ ωωFWHM ;          (C-15) 

and thus, 

3Γ3
00 Q

FWHM
QBruteFit ==≡

ωω .         (C-16) 

This means that the Q from the brute fit of the voltage signal is 3  times smaller than 

the real Q of the resonance defined in eq. (C-4b) because the FWHM the brute fit can 

obtain from the voltage signal curve is 3  times larger than the original FWHM 

defined in the Lorentzian power signal.   

 

  Summary:  As shown above, by doing not quite correct thing—fitting voltage 

signal to a Lorentzian, one may still approach the real Q by simply multiplying the 

result by 3 , assuming that the brute fit can still identify ω0 and FWHM with decent 

confidence while taking a non-Lorentzian data trace as a Lorentzian one.  In the 

existing literatures from this community, we find sometimes this 3  correcting factor 
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is applied when brute-force fitting of amplitude signal is implemented; while in the rest 

cases, it is then incorrect to fit amplitude signal to Lorentzian without any corrections.   
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Appendix D 
 
A Note on NEMS Oscillator Phase Noise, 
and Phase Noise Comparison 
 
 
This note clarifies the principles and procedures for fair comparisons of NEMS oscillator 

phase noise performance and that of other oscillators (MEMS oscillators, crystal 

oscillators, etc.).  Based on this, it is probably the time for us to consider defining a 

specific figure of merit (FOM) for NEMS oscillators for this kind of comparisons.   

D.1  NEMS Oscillator Phase Noise Data 

Fig. D.1 shows the original raw data of the 428MHz NEMS oscillator phase noise, as 

directly measured by the RDL NTS-1000B phase noise analyzer at the output of the 

NEMS oscillator.   

  Suppose we compare and evaluate the phase noise performance of two oscillators 

operating at carrier frequencies fc1 and fc2, respectively.  Fig. D.2 schematically displays 

the spectra of these two oscillators.   
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Fig. D.1  Phase noise data of the 428MHz NEMS oscillator, as directly measured by the RDL 
NTS-1000B phase noise analyzer (raw data, no frequency dividing or rescaling).   

 

 

Fig. D.2  Schematic for comparison between two MEMS/NEMS oscillators operating at different 
(carrier) frequencies.   
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D.2  Method 1 (“Normalizing Offset Frequency to Carrier”) 

Note the fact that the offset frequency referred to its carrier is different from one 

oscillator to the other, or in other words, the “skirt” should rescale as the carrier 

frequency is rescaled.  So when we rescale the performance at fc1 to that of fc2, we need 

to rescale the offset frequency proportionally,   

1
1

2
2 f

f
ff

c

c Δ⋅=Δ .             (D-1) 

Here for a fair comparison the offset frequencies are normalized to their own carrier 

frequencies.  This leads to a horizontal shift (displacement) from the old to the new 

offset frequency, which on the usually used log plot is 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ−Δ

1

2
12 logloglog

c

c

f
fff .         (D-2) 

Consequently the phase noise shift (vertical) caused by this offset frequency shift is 

( ) ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=Δ−Δ⋅=Δ

1

2
12 logSlopeloglogSlope]dBc/Hz[

c

c

f
fffSφ .  (D-3) 

Note we usually have the following slopes and power-laws in a measured phase noise 

spectrum: 

Slope[Sφ vs log(Δf)] = −10 to 0dB/dec (flat) for the far-from-carrier ‘tail’ 

Slope[Sφ vs log(Δf)] = −20dB/dec for 1/f 2 phase noise (thermal noise) 

Slope[Sφ vs log(Δf)] = −30dB/dec for 1/f 3 phase noise (1/f noise) and steeper for 

higher powers of f. 
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We illustrate the phase noise offset by this method in Fig. D.3 (horizontal shift from blue 

trace to black trace).   
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Fig. D.3  Phase noise spectrum shift by offset frequency rescaling and carrier frequency dividing 
(example: fc2=10fc1).   

 

D.3  Method 2 (“Carrier Frequency Dividing”) 

We can compare 2
cfSφ  rather than directly compare phase noise Sφ.  This is based on 

the consideration of the Sφ —fc trade-off and it is roughly① consistent with some of the 

figures of merit (FOMs) used in the RF IC community in comparing and evaluating 

CMOS LC VCOs, such as in [1,2].  Hence, if we use 2
cfSφ  as the criteria for 

                                                 

①As we haven’t considered other specs such as power consumption yet, See Section D.5.  Also when we 
compare Sφ./fc

2, it is the lower the value, the better, while it is usually the higher the value the better for 
other FOMs.   
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comparing (on the same plot) the phase noise of two oscillators working fc1 and fc2, the 

phase noise spectrum offset due to this carrier frequency dividing is 

[ ] ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅=Δ

1

22
22

1

log20log10log10dBc/Hz
c

c
c

c f
fSf

f
S

S φ
φ

φ .   (D-4) 

This is also illustrated in Fig. D.3 as the vertical shift from blue to green (also with the 

example of fc2=10fc1).   

 

D. 4  Comparison between Method 1 and Method 2 

Fig. D.3 clearly demonstrates the effects of applying both Method 1 and Method 2 (with 

the case of multiplying to a higher carrier frequency of a 10×; for down dividing just plug 

fc2/fc1 into eqs. (D-3) and (D-4) to compute the offset in phase noise in dBc/Hz). 

  Interestingly, for 1/f 2 phase noise (thermal noise), both methods yield the same results.  

For other than 1/f 2 phase noise behavior, the two methods lead to different results, with 

Method 1 leading to favorable far-from-carrier phase noise but a bit unfavorable 

close-to-carrier phase noise, and Method 2 leading to opposite results.  These effects are 

reversed in cases of carrier frequency scaling down, as log(fc2/fc1) becomes negative for 

fc2<fc1.   

  The difference is because, in Method 1 the phase noise offset is determined by the 

original slope times the horizontal offset frequency scaling; while in Method 2, 

everything is simply shifted vertically by 20dB times the carrier frequency scaling, 

regardless of the original slope.  This universal 20dB factor is due to the brute-force 

definition of 2
cfSφ , based on the rough assumption that phase noise measured at offset 
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frequency Δf from carrier fc is proportional to (fc/Δf)2,② as dictated by the classical 

Leeson’s model [3].   

So my comments are: Method 1 is intuitive in the physics picture and captures the 

scaling proportionality; Method 2 is simpler and even coarse, but it is convenient as an 

FOM for engineering applications.   
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Fig. D.4  428MHz NEMS oscillator phase noise rescaled up to 6.8GHz CSAC LO carrier, using both 
Methods 1 & 2, in comparison with the CSAC LO phase noise requirements.③

In particular, for our NEMS oscillators and resonators to compare with 6.8GHz CSAC 

LO requirements, applying the above two Methods introduces minor difference, because 

our NEMS phase noise is pretty close to 1/f 2 behavior (thermal noise) throughout the 

                                                 

②This is not always true though; only exactly true for thermal noise limited case.  And this actually 
explains why Method 1 and Method 2 yield completely the same result for 1/f 2 phase noise (thermal noise).   

③The CSAC LO requirements are from [4].  Some newly update on the requirements can be found in [5].  
The LO requirements described in [5] are more stringent than in [4] (actually there are some issues in the 
requirements from [4]). 
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offset frequency range where we have valid measured data.  As shown in Fig. D.4, by 

using Method 1 and Method 2, we only have slight difference in the NEMS phase noise 

rescaled to 6.8GHz.  Method 1 gives better far-from-carrier phase noise and Method 2 

gives better close-to-carrier noise.  As shown in Fig. D.5 is the example of rescaling the 

NEMS oscillator phase noise down to 10MHz carrier, the effects are reversed.   
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Fig. D.5  428MHz NEMS oscillator phase noise rescaled down to 10MHz carrier (for fair 
comparison with crystal oscillator), using both Methods 1 & 2.   

 

D.5  Extended Discussion on FOM 

Like the figure of merit (FOM) for RF amplifiers can be defined as 

“Gain×Bandwidth/Power Consumption”, which reflects the trade-offs in the design and 

implementation, we also need to think of defining a meaningful and comprehensive FOM 

for NEMS/MEMS oscillator/resonator phase noise.   
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  As mentioned above, in the RF CMOS LC VCOs, considering the trade-offs of phase 

noise, power consumption, oscillator frequency, and tuning range, several kinds of FOMs 

have been defined [1,2,6-9] and most of them are quite intuitive and easy to calculate.   

So we could learn from these FOMs defined for these LC VCOs and define a FOM for 

NEMS/MEMS oscillators, incorporating not only the phase noise and carrier frequency 

considered in the aforementioned Method 1 and Method 2, but also the power 

consumption.  So we can compare con
c

P
f
S

⋅2
φ  for different oscillators, the smaller the 

better.  With this comparison, we can define a FOM in decibel, dBF (dB for FOM), 

FOM [dBF] = 10log(Sφ) [dBc/Hz]-20log(fc) [dB] + Pcon [dBm].   (D-5) 

Note here dBm is power refer to 1mWatt, or, Pcon [dBm]=log(Pcon/1mWatt).  Here in 

calculating FOM [dBF], all the dB-related units (dBc/Hz, dBm) are simply taken as dB in 

getting their decibel values regardless their reference.  Again, in using this FOM [dBF] 

for comparison, the lower the value, the better. 

  For some of presently available MEMS oscillators and NEMS oscillators, now the 

power consumption can be quite high and especially when the MEMS/NEMS devices are 

off-chips, and when some discrete elements are used.  In this case, it would be hard to 

do a fair comparison with the power consumption, so eq. (D-5) will simplify to 

comparing 2
cfSφ  as in Method 2.  But eq. (D-5) can ultimately be the FOM for 

comparisons of all future on-chip MEMS/NEMS oscillators.   
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D.6  Selected Comparisons 

Besides the aforementioned local oscillators for CSAC, we have also compared the 

phase noise performance of the newly-demonstrated 428MHz NEMS oscillator (as 

detailed in Chapter 3) to that of various other crystal oscillators, including both some of 

the state-of-the-art micron-scale ones based upon vibrating MEMS resonators and the 

conventional high-performance quartz crystal oscillators that are dominating today’s 

practical applications.  In all these comparisons, we use Method 1 for rescaling.   
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Fig. D.6  UHF NEMS oscillator phase noise performance in comparison with that of the recently 
developed state-of-the-art HF/VHF vibrating MEMS oscillators (data from [10-12]).   
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Fig. D.6 shows the comparison with some of the best MEMS oscillators based on 

vibrating MEMS resonators recently reported [10-12].  Compared to the NEMS 

resonator, these MEMS devices are micromechanical resonators that have much larger 

volume and operate at much lower frequencies, namely, a 10MHz doubly-clamped 

beam [10], another 10MHz but wider doubly-clamped beam [11] for enhanced power 

handling, and a 60MHz wine-glass disk [12] for both enhanced frequency and power 

handling.  In comparison, all phase noise is scaled to 10MHz carrier using Method 1.  

It is seen that the wider beam 10MHz MEMS oscillator does not perform noticeably 

better than the thin beam one does.  The 60MHz wine-glass MEMS oscillator has 

considerably better phase noise.  The phase noise of the first realized 428MHz NEMS 

oscillator, yet unoptimized, is comparable to that of the MEMS beams with much larger 

device sizes and much lower frequencies.  The ultimate phase noise limit is set by the 

428MHz NEMS resonator.  If realistically approached, this can outperform the 

wine-glass MEMS oscillator.   
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Fig. D.7  UHF NEMS oscillator phase noise performance compared with that of a high-performance 
930MHz GSM VCO in actual applications (data from Aeroflex).   
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  Fig. D.7 demonstrates a comparison with the 930MHz GSM VCO, data rescaled to 

930MHz carrier using Method 1.  Comparison with some more advanced quartz crystal 

oscillators are collected in Fig. D.8, all data rescaled to 13MHz carrier using Method 1.  

Both figures show that the phase noise performance of the first UHF NEMS oscillator is 

not as good as that of the advanced quartz crystal oscillators.  On the other hand, 

engineering of detection and control circuits for NEMS oscillator would reduce its phase 

noise to match the intrinsic noise performance of the NEMS resonator.  Moreover, 

engineering of NEMS resonator devices could further scale down the intrinsic noise limit.  

One probable approach is to develop NEMS oscillators based on arrays of 

mechanically-coupled NEMS resonators.  As discussed in Chapter 3, this would enable 

better power handling capability while still taking advantage of the high-frequency 

characteristics of NEMS devices.   
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Fig. D.8  UHF NEMS oscillator phase noise performance compared with that of state-of-the-art 
Quartz XOs used as references in GSM VCOs (data from Analog Devices, Raltron, etc.).   
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Appendix E 
 
A Note on the Measures of Frequency 
Stability 
 
 
This note deals with the concepts and measures of frequency stability (or frequency 

instability) of resonators and oscillators.  In particular, given the context of resonant 

mass sensing of this thesis work, this note addresses the relationship between the often 

used RMS fractional frequency shift and the more professional Allan deviation widely 

used in the frequency control community.   

  In the context of analyzing the mass sensitivity of NEMS resonators, based on the 

assumption that the accreted mass to the resonator, δM, is a small fraction of the effective 

vibratory resonator mass Meff, one can have [1] 

0
1

0
0

δωδω
ω

δ −ℜ=
∂

∂
≅ effM

M ,          (E-1a) 

or, 

0

00

ω
δωω

δ ⋅
ℜ

≅M ,             (E-1b) 
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where ω0 is the resonance frequency, 00 ωωδω −= is the resonance frequency shift due 

to the accreted mass, and effM∂∂=ℜ 0ω  is the mass responsivity (characterizing how 

responsive the resonator is with respect to the added mass).   

 Eqs (E-1a) and (E-1b) are general as long as δM<<Meff is assumed.  In this sense, if 

one can monitor 
0

0

ω
δω  as the instantaneous fractional frequency shift, then δM is the 

instantaneous loaded mass.  In real measurements, however, the more useful are the 

RMS values as some certain averaging process is always involved in a real measurement 

and the RMS values are more meaningful in characterizing the mass loading physical 

process.  Below, except specific explanation, 
0

0

ω
δω  (or more strictly should be 

0

0

ω
δω ), is simply used as the RMS fractional frequency shift, and δM (more strictly, 

should be 〈δM〉) is the RMS loaded mass.   

 

The easiest way to see the relationship between the RMS fractional frequency shift and 

the Allan deviation is to carefully examine their definition and compare them in the time 

domain.   

First, define the instantaneous fractional frequency shift (from the nominal value ω0) 

as 

( ) ( ) ( )
0

0

0

0

ω
ωω

ω
δω −

==
tt

ty .          (E-2) 

In real measurement with averaging time τ, one has the measured value of fractional 

frequency shift for the arbitrary ith time interval 
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ti dttyy 1 .            (E-3) 

By definition, the RMS fractional frequency shift (variation) is 
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or equivalently can be measured via the RMS frequency shift 

( ) 2
1

2
00 ωωδω −= ,            (E-4b) 

where 〈 〉 denotes infinite time average, or ideal ensemble average.  In real 

measurements, the RMS fractional frequency shift (variation) is based on a finite 

ensemble average 
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where iω  is the measured (averaged) frequency in the ith interval.  Note here for the 

finite ensemble, the RMS value is based on sample standard deviation.   

 

  The Allan Variance is defined as the sample variance of two adjacent averages of the 

instantaneous fractional frequency shift 

( ) ( )
2

2
12 ii yy −

= +τσ .           (E-6) 

Note that this definition keeps the same as those in [2] (and ref. 20, 21 therein) and [3].   
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  Thus one has the Allan variance formula from a finite data ensemble in a real 

measurement 
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Note that this definition is similar to the MRS definition, except for the factor 1/2.  Then, 

by definition, Allan deviation is the square root of Allan variance, 
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  Now we compare eq. (E-5) and eq. (E-8).  For a not-so-bad measurement, if the 

system still has decent relatively-long-term stability, usually the averagely measured data 

1+iω  and iω  won’t be deviated from the nominal value 0ω  too much, then comparing 

eqs. (E-5) and (E-8) shows that one should expect 

0

0

2
1

ω
δωσ ⋅≈ .             (E-9) 

Note that the averaging time should be the same in calculating both the Allan deviation 

and the RMS fractional frequency shift.  For systems with not-so-good stability for 

longer-term than the minimum averaging time in the measurement, e.g., in case 

( ) ( ) ( iiii )ωωωωωω −>−≈− ++ 1001 , then one should expect 

offset∆+⋅≈ σ
ω
δω 2

0

0 ,           (E-10) 

where the offset value should be determined by the longer-term (drifting) frequency 

deviation from the nominal value ω0.  In the end, for a specific case, which is more 
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suitable would heavily depends on the time scale of the offset term, i.e., at what time 

scale it is considered to be relatively long-term and over which there may be considerable 

deviation from the nominal resonance frequency ω0.   

 

Shown in Table 1 below are some real data from several generations of the NEMS 

resonators, in fairly good agreement with eqs. (E-9) and (E-10).   

 

Table E-1  Comparison and summary of measured data from generations of NEMS resonators. 

 00 ωδω  

(1sec RMS) 

σ 
(τ=1sec) 

 
Ratio 

σ
ωδω 00

 

124MHz (Q~1300) 4.83×10-7 3.82×10-7 1.26 

133MHz (Q~5000) 1.49×10-7 9.76×10-8 1.53 

190MHz (Q~5200) 6.31×10-7 4.39×10-7 1.44 

295MHz (Q~3000) 6.77×10-8 4.69×10-8 1.44 

420MHz (Q~1200) 4.76×10-7 3.12×10-7 1.52 

411MHz (Q~2600) 1.21×10-7 6.63×10-8 1.82 
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