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Nanonetworks is an emerging field of study where nanomachines communicate to work
beyond their individual limited processing capabilities and perform complicated tasks.
The human body is an example of a very large nanoscale communication network, where
individual constituents communicate by means of molecular nanonetworks. Amongst the
various intra-body networks, the nervous system forms the largest and the most complex
network. In this paper, we introduce a queueing theory based delay analysis model for
neuro-spike communication between two neurons. Using standard queueing model blocks
such as servers, queues and fork-join networks, impulse reception and processing through
the nervous system is modeled as arrival and service processes in queues. Simulations show
that the response time characteristics of the model are comparable to those of the biological
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1. Introduction

Applications of nanotechnology are being realized from
nano-switches and actuators [1], to intelligent drug deliv-
ery [2], nanoscale sensing [3] and bio-hybrid systems [4].
Although the promise of nanotechnology is huge, the as-
sociated challenges are not small by any means either.
Nanomachines face very small dimensions, scarce process-
ing, limited memory resources and simple networking ca-
pabilities.

The human body is a huge nanoscale communication
network, where individual entities such as organs or cells
communicate by means of nanomachines to make an
intelligent system on a macro scale [5]. Understanding the
dynamics of molecular communication not only helps us
advance our work in development of nanomachines, but
also gives a new perspective to the science of disease and
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treatment. Many diseases of the human body can in fact
be quantified as various forms of communication system
failures [6].

The nervous system forms one of the most complex
communications systems. It is also one of the most studied
systems because of its elegance and importance in the hu-
man body. Nervous diseases such as Alzheimer’s disease,
Schizophrenia and Parkinson’s disease are key challenges
for the world in terms of human disease in the current age.

Although the applications and information in a partic-
ular communication network may differ significantly, the
methods for communication remain similar. Several stud-
ies on molecular communication [5-9] target the nervous
nanonetwork to develop communication-theoretical un-
derstanding of the nervous system. These studies result
in the formulation of various models of synaptic channels
under different scenarios. On the other hand, [10-12] in-
troduce models for biological systems based on layered
queueing networks.

The advantage of using queueing analysis for biologi-
cal networks lies in the fact that big networks such as cen-
tral nervous system and the neural cortex can be viewed
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Fig. 1. Communication between a presynaptic and a postsynaptic neuron.

on the whole as a single network, thus making us able to
study the collective behavior of these networks. To date,
no work exists on the modeling of nervous nanonetwork
from the queueing theoretical perspective. The motivation
for such a model lies in a variety of applications from drug
delivery to nervous disorder diagnosis. For example, in case
of drug delivery, the nervous system can be viewed as the
wired network of the body and target-specific drug deliv-
ery can be triggered by means of nerve impulses and neu-
rotransmitters. Parameters such as the time required for
a particular drug delivery and optimal rates of impulses to
produce these scenarios can be viewed as queueing param-
eters. Additionally, the diagnostics of nervous disorders,
where reflex latencies help in diagnosis, can benefit from
such a model. Practitioners can move from using basic re-
flexes such as patellar reflex to more complex responses to
improve disease diagnostics.

The objective of this paper is to derive a model of
nanoscale neuro-spike communications between one in-
put and one output neuron by using the fundamentals of
queueing theory. We first develop an understanding of the
neuro-spike communication and identify key blocks of the
system. We then model these blocks using queueing the-
ory implements such as queues and servers. Finally, we
perform an analysis of response time characteristics of the
model.

The remainder of this paper is organized as follows. We
provide a brief overview of neuro-spike communication
in Section 2. Section 3 presents the impulse transmission
through the axon while Section 4 discusses the neurotrans-
mitter propagation and reception in the synapse. Based on
these analyses, we develop a queueing model of the neu-
ron in Section 5. Results are presented in Section 6 and con-
cluding remarks are provided in Section 7.

2. Overview

The fundamental task of a neuron is to receive, conduct
and transmit spikes or impulses which are generated in
response to external or internal stimuli. These impulses
travel between various body parts and the central nervous
system (CNS).

A single neuron can be divided into three main parts
which are the dendrites, the soma or cell body and the
axon. The communication between two neurons starts
when an impulse traveling in a presynaptic neuron, also
known as the action potential (AP), reaches the axon ter-
minal. Fig. 1 shows two neurons in such a scenario. In order

for the AP to traverse from one neuron to the next, it needs
to travel across the cell gap known as the synaptic cleft.
Synaptic communication can be done either electrically or
chemically.

In electrical synaptic communication, APs are trans-
ferred directly between two neurons by means of direct
physical connections between them. On the other hand,
in chemical synaptic communication, chemicals known as
neurotransmitters are released in the synaptic space, also
known as synaptic cleft, to achieve communication. Since
chemical synapses occur more frequently, we focus our
study on these.

Communication begins when the AP reaches the ax-
onal terminals of the presynaptic neuron. The electrical de-
polarization of the cell membrane at the synapse causes
Calcium ion (Ca?*) channels to open. Ca** ions then flow
through the presynaptic membrane, rapidly increasing the
calcium concentration in the interior of the cell membrane.
This in turn activates a set of calcium-sensitive proteins
attached to membranous sacks called vesicles that con-
tain neurotransmitters to fuse with the membrane of the
presynaptic cell. The fused membranes start to dump neu-
rotransmitters into the synaptic cleft. The neurotransmit-
ters drift across the synaptic cleft and bind to receptors
present on the dendrites and the cell body of the postsy-
naptic neuron. The receptors are ligand-gated ion chan-
nels which open upon binding with a neurotransmitter.
These channels create paths for ions to enter and leave the
cell membrane of the postsynaptic neuron. lons which are
higher in concentration outside the cell membrane, flow
inside the cell body causing a local depolarization. Each
of these local polarization causing channels creates a po-
tential change known as Excitatory Post Synaptic Potential
(EPSP). The overall depolarization is a sum of all the EPSP
and is proportional to the size of the stimulus, strength of
the synapse or the amount of neurotransmitters released.

The depolarization causes the membrane threshold to
rise from a base value of —70 mV to about —50 mV. At
this stage, the depolarization is not powerful enough to tra-
verse through the entire neuron so it needs to be amplified
along its way. When the depolarization reaches the Axon
Hillock, voltage-gated Sodium (Na™) and Potassium (K*)
ion channels open. These form a positive feedback caus-
ing neighboring voltage-gated channels further along the
axonal body to open. The depolarization thus travels fur-
ther along the axon. The Na™ channels become inactivated
when the depolarization peaks at around 70 mV. The K
channels then normalize the cell polarization afterwards.
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Fig. 2. Functional block diagram of neuro-spike communication.

The AP travels through the axonal body until it reaches the
axonal terminal repeating the same operations with fur-
ther neurons.

Fig. 2 shows a functional block diagram of neural com-
munication. We see that the AP in a presynaptic neuron
causes vesicle release in the synaptic cleft causing the
diffusion of the neurotransmitter, EPSP generation at the
postsynaptic neuron and spike propagation through the
axon. All these processes can be loosely grouped under two
types of transmissions namely, the synaptic transmission
and the axonal transmission. Since our model is from a
queueing perspective, we look at these processes in terms
of the service times required by these processes as well
as the distributions of arrivals in these transmission net-
works.

3. Axonal transmission

In this section, we develop an understanding of ax-
onal communication and identify the arrival and process-
ing of APs through the axon. This analysis helps identify the
queueing model for an axon. To simplify additional analy-
sis, we will further identify dendritic transmission and so-
matic summation of the EPSP signals in this section as well.

Axons act as the transmission lines of the nervous sys-
tem with diameters on the order of a few micrometers and
are either unmyelinated or myelinated. Myelinated axons
are covered by a sheath of a fatty dielectric substance called
myelin. Since the axons carry electrical signals, insulation
due to myelination creates a positive effect on the con-
duction enabling a rapid and better electrical propagation.
Once the impulses reach the end of the axon, they termi-
nate in the axonal terminal causing neurotransmitter re-
lease from vesicles. Although, the process is very complex,
a few studies have identified the real-time latency of this
release operation [13].

3.1. Arrival of impulses

Axonal transmission starts with the arrival of impulses
in the axon. Although the impulse sources for CNS are very

diverse, most of these can be modeled as Poisson processes.
In fact, several impulse sources for human nervous system
are already known to be Poisson processes. These include
the arrival rate of photons in human eyes, as well as sen-
sations through the olfaction or gustation [7,14]. Therefore,
the arrival of impulses in an axon can be modeled as a Pois-
son process.

3.2. Axon as a cable

The best way to analyze the operation of an axon is to
consider the operation of an axon as that of a transmission
cable. Cable theory [15] provides us with such an axon
model. Assuming that passive conduction occurs as the
impulse is conducted through an axon, axons are modeled
as cylinders composed of infinitesimal segments as shown
in Fig. 3. Here, c,, is the capacitance due to electrostatic
forces across the axon membrane, r,,;, is the membrane
resistance per unit length, i,,, is the membrane current, r; is
the axoplasmic resistance per unit length within the axon,
i; is the axoplasmic current, r, is the resistance per unit
length outside the membrane and a is the radius of the
axon.

The cable equation for the above model by [15] is

, 0%V (x,t) aV(x,t)
A P =Vix, )+t o (1)
where V (x, t) is the function for potential difference with
respect to distance and time, A is the length constant
defined as A = ./rp/r;, and time constant t is given as,
T = I'mCpr-

The length constant indicates how far a charge can flow
along a cable. Since A is proportional to the square root of
membrane resistance per unit length, r,,,, the greater the
values of rp,,, the farther a charge can travel inside an axon.
Myelinated axons have higher membrane resistance than
unmyelinated neurons so their length constants are higher
as well. That is the reason why APs can travel more reliably
for longer distance in much thinner myelinated neurons
in comparison with unmyelinated neurons. Refs. [16,17]
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Fig. 3. Cable theory model of axon.

show that as the frequency of the input signal to a neuron
increases, APs attenuate much faster because the length
constant decrease that is occurring is proportional to
increase in the internal resistance r;. This shows that there
is a frequency dependence of the axonal transmission as
well.

The time constant T determines how fast the membrane
potential responds to a current in the axoplasm. Thus, the
larger the membrane capacitance, ¢;;, the longer it takes for
a section of the membrane to get charged or discharged.

Suppose V, is the voltage at a given distance x from one
end of an axon, it is given as a solution for (1) by [15] as

Vy = Voe /% (2)

where Vj is the potential at the point of impulse initiation.
Based on (2), we analyze and compute the time a signal
takes to travel through an axon and the level of signal
attenuation at a certain distance.

3.3. Conduction speed of an axon

One of the parameters most commonly found by exper-
imental studies for various axons is the conduction speed
through an axon. Lengths for various neuron types are
fairly easy to find experimentally. Thus, the time required
for a transmission through that axon can be calculated
based on the conduction speed through an axon.

Let us consider an AP traveling along an axon such that
it faces no attenuation. The conduction speed, s, is given as
the derivative to distance traveled with respect to time.

_dx 3
= (3)

If a voltage V(x,t) of the AP is also moving in x
direction, [ 18] shows that
2V (x,t) B 524 . )
oz g P
where d is the diameter of the elements from Fig. 3, p = 1;-
pi-a? is the resistivity of the axoplasm and I, is membrane
current density given by I, = ip, /(7 - d). Eq. (4) can also be
re-written as

P2Vix,t) d
s= (220 2 (5)
otz 4.-p-Iy

Thus, the conduction speed of an axon is directly pro-
portional to the square-root of its diameter. This charac-
teristic of the axonal communication is observed in most
experiments based on axonal communication [19,17].

S

In [20], the authors perform this analysis further and
identify the conduction speed of unmyelinated axons as

d
Sim = | ————— (6)
8-p-c2.-r*

where c is the membrane capacitance per unit area and r*
is the resistance per unit area.

3.4. Na™ channel inactivation

Before an AP is transferred, the axonal membrane is at
rest and Na™ channels are in a deactivated state. In re-
sponse to an AP, these channels open, allowing the ions
to flow into the axon and cause the action potential to
grow. At the peak of an AP, when sufficient Na™ ions en-
ter the membrane, no further conduction is possible until
a mandatory refractory period of Na* ion channels passes.
This absolute refractory period is followed by a relative re-
fractory period where the KT ions terminate the action po-
tential by re-polarizing the membrane. K™ ions, that move
out of the cell, bring the membrane potential closer to
the equilibrium potential for potassium. This causes brief
hyper-polarization of the membrane making the mem-
brane potential transiently more negative than the normal
resting potential. Until the potassium conductance returns
to the resting value, a greater stimulus will be required to
reach the initiation threshold for a second depolarization.
The return to the equilibrium resting potential marks the
end of the relative refractory period. Although, conduction
is possible after the absolute refractory period passes, this
happens only in certain circumstances.

Mentioning this phenomenon is important because for
a given axon, this causes an additional delay before a new
impulse can enter and propagate through the axon.In[17],
the authors show that the during the inactivation after an
AP, new impulses fail. They also show that the inactivation
period increases at lower temperature, although, for the
purpose of this work we are looking at neurons operating
at a physiological temperature of 37 °C only. Hence, the
inter-arrival time between two impulses should be larger
than the inactivation period of the Na™ ion channels for
reliable communication.

3.5. Dendritic and somatic transmission
Although there are differences in the sizes, shapes and

physical properties of dendrites and axons, they have a
similar function of conducting impulse signals. That is why,
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both are modeled in a similar way by cable theory [21].
Dendritic trees can be modeled as parallel trees of cables
or they could be lumped together as equivalent cables.

Assuming the average dendritic length of E[Lp] and a
dendritic diameter of dp, the average propagation time
through a dendrite can be a modified form of (6) as the
dendrites, when considered as cables that are not coated
by myelin [22], the average delay an EPSP faces through a
dendrite and the soma is given as

E[Lp]

dp
8-p-c2.r¥

Rps = Rion + =+ Rsoma (7)

where Rj,; is the average ion channel inactivation time
for a dendrite branch and Rsyp is the time for the EPSP
summation and propagation from dendrites to the axon
hillock.

The various EPSP signals generated by the dendrites
are summed up as they move from the soma to the axon
hillock. Since the communication is very secure, we can
assume that there is a certain degree of synchronization in
the EPSP arrivals. We will explore this further in the next
section.

4. Synaptic transmission

In this section, we discuss synaptic transmission which
starts with neurotransmitter release from the vesicles and
diffusion across the synaptic cleft. Neurotransmitter re-
lease can be identified by the arrival process in a queueing
network whereas the diffusion and EPSP generation con-
stitute the processing of the synaptic queueing network.

4.1. Neurotransmitter arrival

Synaptic transmission starts by the arrival of neuro-
transmitters in the synapse. Neuro-spikes from the axon
cause vesicles to move towards the cell membrane of the
axon terminal and fuse with it. The neurotransmitters
housed in the vesicles are then released in the synaptic
cleft. Thus, neurotransmitter release can be thought of as
the process by which the neurotransmitters arrive in the
synaptic medium.

Neurotransmitter release is a random process in that
even with the presence of neuro-spikes, vesicles might not
be released or vice versa. The probability of such a scenario
is quite low [23], therefore, if we ignore such cases, the
release process depends directly on the arrival process of
spikes.

4.2. Diffusion through synapse

The neurotransmitters released in the synaptic cleft
reach the postsynaptic neuron by means of diffusion
through the synaptic medium. The linear diffusion equa-
tion governs this process of diffusion [7] given as

ac(x, t)
at

where ¢ denotes the concentration and D denotes the
diffusion coefficient. Considering Gaussian diffusion, the

= DVZc(x, t) (8)

solution of the diffusion equation in an n-dimensional
space from a position x is calculated by the theory of
Green’s function as

(9)

—(x — ¥)2
G(x, t) = (4 Dr)~"? exp[(’"‘)]

4Dt

where Green’s function tells us how a point of probabil-
ity density initially at position x evolves over time and
n-dimensional space. The PDF in (9) exists under the con-
dition of normalization stated as

/OO G(x, t)dx = 1. (10)

e}

Assuming that diffusion for the current problem is a
homogeneous process in one dimension, we modify (9) as

1 exp[ —(x — x/)z]
At 4t ’

Eq. (11) along with the condition provided in (10) de-
scribes the time distribution for diffusion of a neurotrans-
mitter from one neuron to the next.

Gx, t) = (11)

4.3. EPSP generation

When neurotransmitters reach the ligand-gated chan-
nels present on the dendrites and soma of the postsynap-
tic neuron, they attach to these channels and a flow of ions
starts between the cell and its surroundings. This causes
EPSP to be generated at each of these channels. The EPSP
generated at each of these ligand-gated channels is inde-
pendent from EPSP generated from other channels. Sub-
sequently, the cell body sums these independent EPSP to
generate a potential difference. If this potential difference
is above the threshold voltage, an AP is generated in the
postsynaptic neuron, following a positive feedback ampli-
fication of the EPSP. Otherwise, the EPSP pulse dissipates
without causing an AP in the postsynaptic neuron. The
number of neurotransmitters that successfully attach to
the ligand-gated channels depends on the number of chan-
nels available at a time and the concentration of the neu-
rotransmitters in the synapse [24].

When neurotransmitters diffuse through the synaptic
cleft to reach ligand-gated channels, not all the neurotrans-
mitters are attached to these gates. The remaining neuro-
transmitters remain in the synaptic gap until they attach to
one such gate, degrade or are re-uptaken by the axon ter-
minal of the presynaptic neuron. A single action potential
might give rise to several action potentials in the postsy-
naptic neuron if a significant amount of neurotransmitter
has been released and the corresponding half-life is large
enough to instigate another action potential [25]. Consid-
ering the neurotransmitters as information carrying pack-
ets in the synaptic system, we see that the degradation or
re-uptake of the neurotransmitter in the synapse while it
is not attached to the channel is analogous to a packet leav-
ing the queue or a packet being dropped because of time to
live (TTL) constraint.

In order to simplify the system, let us consider a sin-
gle gate attachment as a service by the ligand-gated chan-
nel server and neurotransmitters that could not attach are
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considered as waiting for the attachment chance. The anal-
ysis for the complex and random process of neurotransmit-
ter attachment is very challenging otherwise because there
might be cases where a single neurotransmitter might get
attached to the channels several times and another neuro-
transmitter might not get attached at all [24]. Since all the
neurotransmitters carry similar information, we can con-
sider the attachments in a series one after the other. Thus,
by wait we mean that a significant concentration of neu-
rotransmitters will remain in the synaptic cleft. This as-
sumption will be especially necessary in the case where a
stimulation frequency is frequent. In such a case the
synapse will have a concentration of the previous neuro-
transmitter release before a new impulse arrives [13].

5. Neuron queueing model

To view the neuron from a queueing perspective, we
need to break down the neuron model into queueing
constituents namely, the servers and the buffers/queue.

Fig. 4 illustrates a diagram of the proposed model.
We assume that there are two major constituents of the
system. The first constituent of the system is a fork-
join queueing network that deals with neurotransmit-
ter release, synaptic diffusion, dendritic propagation and
EPSP generation. The number of branches of this fork-join
synaptic queue is equal to the number of ligand-gated
channels available for neurotransmitters attachment. To
simplify the process, we assume that all the services of
the synaptic communication are performed at the ligand-
gated channels and each such receptor channel acts as a
server. The synapse would thus act as the buffer of the sys-
tem. The identification of the synapse with a queue is nat-
ural because when one neuron is trying to communicate
with another, its respective neurotransmitters remain or
buffer in the synapse while a previous impulse is being ser-
viced by a neuron. In case that a single presynaptic neuron
is in communication with multiple postsynaptic neurons,
the synapse will still act as a queue. Each neuron will have
its own fork join queue before its ligand-gated ion servers
further serving their own axonal server. There is no con-
dition on how the synaptic queue is shared between these
servers as long as the number of available neurotransmit-
ter is greater than the number of ligand-gated channels
which is usually the case [13,24].

The second constituent is composed of just a single
server. This server models the propagation of neuro-spikes
through the postsynaptic neuron axon. The absence of a
queue in the network relates to the fact that an axon can
serve only one impulse at a time and does not contain any
buffer where another incoming impulse can queue. It is,
however, possible for a physical axon to have more than
one impulse coursing though it at a time. This is because
once the Na*t absolute refractory period is over, a new
impulse may be generated in the axon by a new somatic
EPSP summation. This is especially true for longer axons
in bigger animals where refractory periods are a fraction
of the total propagation time. The reason for still keeping a
single server in the axonal communication is that if we look
at the system from the perspective of an incoming impulse,
it will still be served by the single axonal server after being
served by the synaptic queue. Any impulse that comes
during the refractory period would not be entertained. The
discipline of this axonal server is first come first serve
(FCFS).

The summation of the EPSP in the soma may or may
not result in further spike generation. Thus, depending on a
threshold it might end up in a sink or might be transmitted
through the axonal body. The probability of failure py to go
beyond the threshold voltage is usually quiet low because
neural communication is quite reliable as discussed in
[19,17] but it is an essential parameter for any reliable
model of communication [7]. In case there is a failure,
further axonal propagation does not happen. Therefore, the
second network is composed of single server queues with
FCFS discipline queues in parallel.

5.1. Analysis of the synaptic transmission

5.1.1. Arrival process

To make the analysis of the system simple, we have
assumed that the dendritic propagation and the somatic
communication are a part of synaptic communication.
The assumption does not make any difference in our
analysis other than providing a simplification by keeping
the constituents of the fork-join network together.

The arrival distribution of the synaptic distribution
depends on the departure distribution of the axonal server.
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Several works on distributions of firing rate of neurons
such as [26,27] identify the distribution of firing neurons
to be Poisson. This is apparent from the analysis for axonal
server given above as well. A Poisson input distribution to
the axonal server, if deterministically served, generates an
output which is also Poisson distributed.

5.1.2. Response time

The service time of the fork-join synaptic queue net-
work involves several processes such as the time taken for
neurotransmitter release for vesicles, time take for diffu-
sion through the synapse and the dendritic propagation.
In such scenarios, we often assume network service time
distributions to be some unknown general distribution.
Therefore under the analysis presented, we can say that
the fork-join synaptic queue is a network of parallel M/G/1
queues.

The total response time of synaptic transmission Rs is a
summation of the average vesicle release time Ry, average
dendritic and somatic transmission time Rps given by (7)
and the average response time for diffusion through the
synapse Ry.

Rs = Rves + Ry + Rps. (12)

It is difficult to model fork-join queues analytically and
in fact, to date, analytical results exist for only two server
systems [28]. Usually for more than two queues, approxi-
mations for mean response time exist in case of homoge-
neous servers. This suits the current analysis because the
servers we are considering here are homogeneous in na-
ture.

We assume that the parallel queues of neurotransmit-
ters in the synapse are independent and identically dis-
tributed (i.i.d.). In [29], the authors have presented an
approximation of the mean response time of a set of i.i.d.
fork-join queues with M/G/1 queues in parallel service as

RN ~ R] + O']FNO[N (13)

where R; and o4 are the mean response time and standard
deviation, respectively, for one M/G/1 queue with no fork-
join properties. Fy is a constant which scales according
to the service time distribution of the servers and ay is a
scaling factor that helps scale simulation results according
to the results of a physical experiment.

If we consider a unit distance between the two neurons
through the synapse, the PDF of neurotransmitter diffusion
given in (11) can give us a service time distribution of
neurotransmitter service for unit distance case. It should
also be mentioned here that a normalization constant
according to (10) should be multiplied so that the PDF
does not exceed the unit area under the curve condition.
Thus, the distribution of service time for a single M/G/1
neurotransmitter service is given as

1 -1 —t

where the normalization constant exp[2 5_7tnj| is approxi-

mated numerically to a precision of 1076,

Since the failure rate of neurotransmitters generating
an AP from their individual EPSP is quiet low in case of
a valid stimulation to the presynaptic neuron [17], there
must be a high degree of synchronization in their diffusion
though the synapse. In other words, this means that the
mean response times of each of the fork-join queues is
quite similar. Thereby, the standard deviation term from
(13) can be neglected for successful transmission case
resulting in

Ry ~ R =/ tG(t)d. (15)
0

5.2. Analysis of the axonal server

5.2.1. Arrival process

Any sum of EPSP above the threshold level of the
presynaptic neuron generates an AP in the axon. The arrival
of this EPSP excitation to the presynaptic neuron is a
stochastic process. Since there can be several independent
sources that produce the excitation, the arrival process at
the axonal server can be considered as a Poisson process.

5.2.2. Response time

To determine the response time of an axon, we should
first look at what constitutes the service of an axon. After
an impulse enters an axon, as long as it is propagating
within an axon, we consider it under service. Additionally,
after an impulse leaves, the axon cannot have any further
impulses pass through it until the Na* ion channels return
from their inactivation state. Thus, the total response time
of an axon is a summation of the Na® ion inactivation
period and the response time for propagation through the
axon body.

Ra = Rng + Rap (16)
where R, is the average response time of an axon, Ryq
is the average time it takes for Na™ ion channels to
become reactivated and Ry4p is the average response time
for impulse propagation through the axon.

Considering that the axons of a particular neuron type
have an average length of E[L,], and conduction speed s,
the average response time for propagation through such
axons, Rap, is given as

EIL
Rap = [5*‘]. (17)

Therefore, using (5), (6), (16) and (17), we can provide
expressions for response time of an axon for any general
case and for an unmyelinated neuron case as

E[L4]
Ra = Rya + ————— (18)
2Vt d
a2 4-plm

E[La]

—d
8-p462-r*

We see that the response time of the axonal server
depends on the conduction speed, diameter, length,
resistivity of the axoplasm, the Na™ ion inactivation period
and other physiological factors of an axon.

Ra—nm = Rna + (19)
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5.3. Total response time

Both the axonal server and the fork-join synaptic queue
are in series, therefore, the overall mean response time of
a neuron to a single impulse is the summation of the mean
response times of the axonal transmission and the synaptic
transmission.

R =Rs + Ry (20)

Eq. (20) can be written in its explicit form as
oo
R = Ryes + / tG(t)dt + Rps + Ry
0
L

vt d '
a2 4-pp

(21)

This shows that the mean response time of a neuron de-
pends on the diffusion characteristics, ion channel inacti-
vation periods and the physical parameters of the neuronal
structure. These characteristics match the results of previ-
ous neural communication models [6-8] and experimental
results [19,14,16,17]. We see that the response time char-
acteristics depend on propagation speed, axonal myeli-
nation and the diffusion distance through the synapse.
Although our work is aimed at the Human nervous system,
the results generated can be applied to any neuron type
with provided characteristics.

An expression similar to (21) can be found specifically
for unmyelinated neurons by using the value of Ry_pp
instead of Ry in (19).

5.4. Impulses in the system

Apart from response time, other important measures of
any queueing network are the number of customers in the
system and its server utilization. These parameters become
especially more useful when we are talking about a large
network of queues. In our current scenario, customers in
the system correspond to impulses present in a neuron.

We first consider the axonal server which is a single
server system without any queue. Since there is no queue,
at any given time, only one impulse can be served by the
axon. Any other impulses that may come are rejected or
dropped until the axon is ready to receive impulses again.
The server utilization over a period of time, however, de-
pends on the rate of impulse arrival at the axonal termi-
nal. For any single server system, the arrival rate should be
less than the service time for stable operation. If this rate
is equal or beyond, the server utilization is hundred per-
cent or in other words the neuron is maximally stimulated.
The human body has several mechanisms in place to avoid
such scenarios. However, tetanic contractions are one such
example where a motor unit (muscle) is maximally stimu-
lated by its associated neuron. This causes violent twitches
in the muscles and can be lethal in certain cases. These con-
tractions are usually the result of tetanus or the effect of
toxic substances.

For the fork-join synaptic network, a queue exists in the
synapse. To be stable, the arrival rate of the fork-join queue
must be less than the sum of service rates of individual

servers. The number of neurotransmitters in the queue in
such a case can be calculated by Little’s law which states

_ }\‘QRS
- (1-pp)

where N is the number of neurotransmitters in the queue,
Aq is the arrival rate in the queue, Rs is the mean response
time of the synaptic system and py is the probability of
failure of axonal communication. It must be noted here that
the number of neurotransmitters in the synapse would be
more than the number of neurotransmitters in the queue.
This is because neurotransmitters stay in the queue until
they are served, they degrade or the presynaptic neuron
re-uptakes them.

(22)

6. Simulation results

A wide variety of neurons occurs naturally, with their
own respective response types. Evolution over millions
of years has fine-tuned these various types of neurons to
perform their specific tasks. However, for all this variabil-
ity, the general characteristics of most neurons are simi-
lar. Various characteristics of neurons such as propagation
speed through axons, effects of myelination, failure rates of
axonal communication and synaptic distances are known
from several studies [ 19,30-34]. Some of the key results for
axons of average adult humans (age > 20 years) are com-
piled in Table 1.

Authors of [35] identify the Na' ion absolute re-
fractory period in human motor neurons to be nearly
2.65 &£ 0.65 ms. It should, however, be noted that this re-
fractory period might vary with stimulus strength [36], but
since it is a small change, it can be neglected when the anal-
ysis of an entire system is being considered. Additionally,
the time required for vesicle release is identified in real-
time by the authors of [13] to be nearly 1.3 ms. We would
be using the mean value of 2.65 ms for Na™ ion absolute
refractory period and 1.3 ms as the vesicle release latency
in our analysis henceforth.

According to [24], the synaptic cleft between a presy-
naptic and a postsynaptic neuron is approximately 20 nm
in humans. Furthermore, the probability of failure p; of AP
generation is taken at 3% according to the results of [17].
By (11), the time for diffusion of neurotransmitters with at
least 97% confidence interval for a synaptic cleft width of
20 nm is derived to be nearly 0.7 ms.

Using these known parameters and assuming some of
unknowns, we simulate a variety of scenarios in the next
sections in MATLAB environment.

6.1. Case study of a nervous circuit: the knee-jerk reflex arc

6.1.1. Overview

One of the key advantages of using a queueing theory is
the ease with which it can look at complex networks to find
the average delays faced by packets. Under this motivation,
we study a simple reflex action of the human body, known
as the knee-jerk reflex, which is often used by physicians
to test nervous diseases of the lower spinal cord. The knee-
jerk reflex is an example of a monosynaptic nervous circuit
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Table 1
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Axon parameters for standard adult (age > 20 years) [30-34].

Type Myelin ~ Diameter Propagation speed

(wm) (m/s)
Tibial motor neurons Yes 13-20 41-53
Femoral motor neurons  Yes 13-20 35-5
Sural sensory neurons Yes 13-20 40-58
Preganglionic neurons Yes 1-5 3-15
Postganglionic neurons No 0.2-1.5 0.5-2.0
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muscle

NI,

Flexor ;

muscle 3B
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e 7
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;
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Fig. 5. The knee-jerk reflex arc [37].

in the body. This reflex is a reflex of proprioception which
helps maintain posture and balance, allowing to keep one’s
balance with little effort or conscious thought. The process
of eliciting a knee-jerk reflex is detailed in Fig. 5.

Striking the ligament of the knee with a reflex hammer
just below the patella stretches the muscle spindle in the
quadriceps muscle. Muscle spindles are sensory receptors
present inside a muscle which detect changes in the length
of the muscle. These spindles then produce a signal which
travels back to the spinal cord via a sensory neuron and
synapses in the L4 spinal segment.

The sensory neuron synapses with two motor neurons.
A femoral motor neuron then conducts the impulse back to
the quadriceps femoris muscle, triggering its contraction.
Through an interneuron, a tibial motor neuron carries the
signal to the hamstring muscle to relax it. This contraction,
coordinated with the relaxation of the hamstring muscle
causes the leg to kick [37].

6.1.2. Experimental results

Since the knee-jerk response is a very simple and
efficient way to detect nervous diseases, it has been the
center of various scientific studies for more than a hundred
years. Many studies are present where the latencies from
the time of stimulation to the time of response have
been conducted. In [38], the knee-jerk reflex latencies are
found and further divided as reflex latency, which is the
time taken by the nervous components of the reflex arc,
and the reflex motor time which is the time required by
the muscles to move after receiving signals from motor
neuron. The results of the study for a set of normal people
are presented in Table 2.

6.1.3. Queueing model of knee-jerk circuit

Based on our discussion of the knee-jerk reflex, we
present the queueing model for the circuit in Fig. 6.
Application of an external impulse to the knee produces
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Server
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Fig. 6. Queueing model for knee-jerk reflex.

Table 2
Knee-jerk reflex parameters [38].

Parameter Value Standard deviation
Number of test subjects 10 -

Mean age 23.3 years 3.1 years

Total reflex time 77.7 ms 16 ms

Reflex latency 23.4ms 1.3 ms

Reflex motor time 54.2 ms 16.3 ms

sensations in the muscle spindle. The muscle spindles
synapse with a sensory neuron making the first fork-join
synaptic queue. This queue feeds the resultant summed
EPSP signals to the Sensory neuron server. The sensory
neuron is further connected with two fork-join queues, one
for the motor neuron of qudricep and the other with an
inhibitor interneuron. We can consider two independent
fork-join queues for each of the nervous connections
because the amount of neurotransmitter released is much
higher than number of gates for either of the connections.
The interneuron is further connected with the hamstring
muscle though another fork-join queue. Each of these
neurons has an axonal server as well.

6.1.4. Simulation of knee-jerk circuit

We now move on to simulate our knee-jerk reflex arc
model. The average axonal lengths of the sensory and mo-
tor neurons for the knee-jerk reflex have not been esti-
mated in any study, therefore, we have to approximate
these. Since the axons of the sensory and the motor neu-
rons run the length of the thigh to the base of the spinal
cord near the hip, a good approximation would be to
use the average distance between the hip and knee joint.
According to US Center for Disease Control (CDC) statis-
tics [39], the average upper leg length for males and fe-
males aged 20-29 is approximately 40 cm. Using (21),
we simulate for the entire reflex arc over the conductions
speeds for the range of values provided in Table 1 and show
the results in Fig. 7.

The shaded region of the graph represents the range of
values for reflex latency as described by Table 2. We see
that a significant number of result data points fall within
this range. This shows that application of the current model
to the knee-jerk reflex nervous circuit gives similar results
to those found by experimental studies. The results can be
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Fig.7. Simulation of knee-jerk reflex over a range of propagation speeds.

further improved if axonal lengths and the latencies are
measured from the same population or studies such as [35]
are conducted on more subjects.

6.2. Effect of axon diameter

The diameter of an axon is directly proportional to
its propagation speed. Taking the case of unmyelinated
neuron, we varied the diameter of the axon to generate
results shown in Fig. 8. The value for capacitance per unit
area, c, is taken as 1 WF/cm?, the value for resistance per
unit area r* is taken as 2000 /cm? and the resistivity
is taken as 100 2m according to [22]. We see that as
the diameter is increased, the propagation speed increases
which, in turn, causes the response time to decrease. The
response time characteristics are similar to those observed
in physical experiments [19,22].

6.3. Voltage decay along myelinated and unmyelinated
neurons

The Human nervous system contains both myelinated
and unmyelinated neurons [14]. Myelinated neurons are
typically found in sensory and motor neurons while non-
myelinated neurons are found in the brain and spinal cord.

Voltage decay along the axonal length is plotted in Fig. 9
using (2). We assume that the AP was at a maximum poten-
tial of 70 mV at the start of two neurons, one myelinated
and one unmyelinated. For a myelinated neuron, the value
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Fig. 9. Voltage decay along a neuron; myelinated vs. unmyelinated
neurons.

of membrane resistance r,, is about 10-2000 times that of
an unmyelinated neuron [22] depending on the thickness
of the sheath of myelin outside the axon. For our current re-
sult, we use a value of 20 times. The resulting figure shows
that over a similar length, the signal of an unmyelinated
neuron decays more quickly. This was expected because
as r, increases, the length constant A increases and the
signal can travel longer distances. An interesting fact here
is that as the membrane resistance increases for myeli-
nated neurons, the membrane capacitance c, decreases.
This keeps the value of the time constant t given by t =
CmTm Nearly unchanged. The result agrees with experimen-
tal results that larger animals, needing slower AP decay,
usually have myelinated neurons which operate at higher
propagation speeds [ 19]. Similarly, sensory and motor neu-
rons have myelination because they have to carry impulses
over longer distances as compared to impulses carried over
much smaller distances carried by the unmyelinated neu-
rons in the human brain.

6.4. Effect of frequency

The frequency of the input to a neuron is directly
proportional to the internal resistance r; and results in
a decrease in the length constant. The results of Fig. 10
are generated using the PDF provided by (11) for a unit
diffusion distance. Our results agree with the results of
[7,17] which state that as the frequency of the input signal
to a neuron increases, the response time increases as well.

02
5Hz

orst \ oo | T 10Hz
20 Hz

Probability
(=)

0.05

40 50 60
Total Delay (ms)

Fig. 10. Effect of frequency on response time distribution.
7. Conclusion

In this paper, we characterized neuro-spike communi-
cation between a presynaptic and a postsynaptic neuron
by providing a queueing theory based model of the neuron.
The model was evaluated on the basis of its mean response
time characteristics. We found that the response time of
neurons depends on a host of features including their en-
vironment, type of neuron, their physical dimensions and
the input signals they are being provided by their respec-
tive stimuli. We also motivated the use of our technique
and applied it to knee-jerk reflex arc. Our results agree with
experimental finding regarding the characteristics of neu-
rons. The model is very flexible and can be applied to neu-
rons from other animals as well.

The current model can be used to gauge the response
time characteristics of bio-inspired networks for new
nanomachines and it may also help build new benchmarks
for the study of the nervous system. Our future works
aim to develop queueing based network models for more
complex neural circuits such as those involved in human
memory to understand the network behavior of sensing.
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